Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 4(1): 1204, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671097

ABSTRACT

Congenital malformations cause life-threatening diseases in pediatrics, yet the molecular mechanism of organogenesis is poorly understood. Here we show that Dyrk2-deficient mice display congenital malformations in multiple organs. Transcriptome analysis reveals molecular pathology of Dyrk2-deficient mice, particularly with respect to Foxf1 reduction. Mutant pups exhibit sudden death soon after birth due to respiratory failure. Detailed analyses of primordial lungs at the early developmental stage demonstrate that Dyrk2 deficiency leads to altered airway branching and insufficient alveolar development. Furthermore, the Foxf1 expression gradient in mutant lung mesenchyme is disrupted, reducing Foxf1 target genes, which are necessary for proper airway and alveolar development. In ex vivo lung culture system, we rescue the expression of Foxf1 and its target genes in Dyrk2-deficient lung by restoring Shh signaling activity. Taken together, we demonstrate that Dyrk2 is essential for embryogenesis and its disruption results in congenital malformation.


Subject(s)
Forkhead Transcription Factors/genetics , Gene Expression Regulation, Developmental , Gene Expression , Lung Diseases/genetics , Protein Serine-Threonine Kinases/deficiency , Protein-Tyrosine Kinases/deficiency , Animals , Forkhead Transcription Factors/metabolism , Lung Diseases/congenital , Mice , Dyrk Kinases
2.
Amino Acids ; 46(3): 575-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24077669

ABSTRACT

Antizyme inhibitor 1 (Azin1), a positive regulator of cellular polyamines, is induced by various proliferative stimuli and repressed by polyamines. It has been reported that the translational repression of Azin1 by polyamines involves an upstream open reading frame on the mRNA, but little has been known about polyamine effect on its transcription or splicing. We found multiple forms of Azin1 transcripts formed by alternative splicing and initiation of transcription from putative alternative start sites. One of the novel splice variants, Azin1-X, has a premature termination codon on 5' extension of exon 7, encodes a C-terminal truncated form of protein (Azin1ΔC), and is subject to nonsense-mediated mRNA decay. 2-Difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis, increased both transcription from the canonical transcription start site and the ratio of the full-length mRNA to Azin1-X mRNA, whereas polyamines show the opposite effect. Thus, polyamines regulate two novel steps of Azin1 expression, namely the transcription and a particular splicing pattern, both of which may affect the level of mRNA encoding the full-length active Azin1 protein.


Subject(s)
Carrier Proteins/metabolism , Polyamines/metabolism , RNA, Messenger/metabolism , Animals , Carrier Proteins/genetics , Cells, Cultured , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RNA, Messenger/genetics
3.
Genes Cells ; 14(1): 79-87, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19077035

ABSTRACT

Ornithine decarboxylase (ODC) antizyme inhibitor (AZI) has been shown to regulate ODC activity in cell cultures. However, its biological functions in an organism remain unknown. An embryonic stem (ES) cell clone was established, in which the Azin1 gene was disrupted by the gene trap technique. To identify the function of Azin1 gene in vivo, a mutant mouse line was generated using these trapped ES cells. Homozygous mutant mice died at P0 with abnormal liver morphology. Further analysis indicated that the deletion of Azin1 in homozygous mice resulted in the degradation of ODC, and reduced the biosynthesis of putrescine and spermidine. Our results thus show that AZI plays an important role in regulating the levels of ODC, putrescine and spermidine in mice, and is essential for the survival of mice.


Subject(s)
Carrier Proteins/metabolism , Animals , Carrier Proteins/genetics , Cell Line , Female , Gene Expression Regulation, Developmental , Genetic Vectors/genetics , Heterozygote , Homozygote , Male , Mice , Mice, Mutant Strains , Phenotype , Polyamines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...