Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 5551, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25418042

ABSTRACT

Animals rapidly adapt to environmental change. To reveal how cortical microcircuits are rapidly reorganized when an animal recognizes novel reward contingency, we conduct two-photon calcium imaging of layer 2/3 motor cortex neurons in mice and simultaneously reinforce the activity of a single cortical neuron with water delivery. Here we show that when the target neuron is not relevant to a pre-trained forelimb movement, the mouse increases the target neuron activity and the number of rewards delivered during 15-min operant conditioning without changing forelimb movement behaviour. The reinforcement bidirectionally modulates the activity of subsets of non-target neurons, independent of distance from the target neuron. The bidirectional modulation depends on the relative timing between the reward delivery and the neuronal activity, and is recreated by pairing reward delivery and photoactivation of a subset of neurons. Reward-timing-dependent bidirectional modulation may be one of the fundamental processes in microcircuit reorganization for rapid adaptation.


Subject(s)
Action Potentials/physiology , Conditioning, Operant/physiology , Motor Cortex/physiology , Motor Neurons/physiology , Adaptation, Physiological , Animals , Brain Waves/physiology , Female , Male , Mice , Mice, Inbred C57BL , Motor Cortex/cytology , Reinforcement, Psychology , Reward
2.
Nat Neurosci ; 17(7): 987-94, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24880217

ABSTRACT

The primary motor cortex (M1) possesses two intermediate layers upstream of the motor-output layer: layer 2/3 (L2/3) and layer 5a (L5a). Although repetitive training often improves motor performance and movement coding by M1 neuronal ensembles, it is unclear how neuronal activities in L2/3 and L5a are reorganized during motor task learning. We conducted two-photon calcium imaging in mouse M1 during 14 training sessions of a self-initiated lever-pull task. In L2/3, the accuracy of neuronal ensemble prediction of lever trajectory remained unchanged globally, with a subset of individual neurons retaining high prediction accuracy throughout the training period. However, in L5a, the ensemble prediction accuracy steadily improved, and one-third of neurons, including subcortical projection neurons, evolved to contribute substantially to ensemble prediction in the late stage of learning. The L2/3 network may represent coordination of signals from other areas throughout learning, whereas L5a may participate in the evolving network representing well-learned movements.


Subject(s)
Learning/physiology , Motor Cortex/physiology , Motor Skills , Animals , Conditioning, Operant , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Dependovirus/genetics , Efferent Pathways/physiology , Forelimb/innervation , Forelimb/physiology , Genetic Vectors , Image Processing, Computer-Assisted , Male , Mice , Mice, Inbred C57BL , Motor Neurons/physiology , Neuroimaging , Neurons/physiology , Patch-Clamp Techniques , Psychomotor Performance , Reward
3.
Article in English | MEDLINE | ID: mdl-23554588

ABSTRACT

Interactions between distinct motor cortical areas are essential for coordinated motor behaviors. In rodents, the motor cortical forelimb areas are divided into at least two distinct areas: the rostral forelimb area (RFA) and the caudal forelimb area (CFA). The RFA is thought to be an equivalent of the premotor cortex (PM) in primates, whereas the CFA is believed to be an equivalent of the primary motor cortex. Although reciprocal connections between the RFA and the CFA have been anatomically identified in rats, it is unknown whether there are functional connections between these areas that can induce postsynaptic spikes. In this study, we used an in vivo Channelrhodopsin-2 (ChR2) photostimulation method to trace the functional connections between the mouse RFA and CFA. Simultaneous electrical recordings were utilized to detect spiking activities induced by synaptic inputs originating from photostimulated areas. This method, in combination with anatomical tracing, demonstrated that the RFA receives strong functional projections from layer 2/3 and/or layer 5a, but not from layer 5b (L5b), of the CFA. Further, the CFA receives strong projections from L5b neurons of the RFA. The onset latency of electrical responses evoked in remote areas upon photostimulation of the other areas was approximately 10 ms, which is consistent with the synaptic connectivity between these areas. Our results suggest that neuronal activities in the RFA and the CFA during movements are formed through asymmetric reciprocal connections.


Subject(s)
Action Potentials/physiology , Motor Cortex/physiology , Optogenetics/methods , Photic Stimulation/methods , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Cortex/cytology , Neural Pathways/cytology , Neural Pathways/physiology , Random Allocation
4.
J Neurosci ; 33(4): 1377-90, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23345214

ABSTRACT

Functional clustering of neurons is frequently observed in the motor cortex. However, it is unknown if, when, and how fine-scale (<100 µm) functional clusters form relative to voluntary forelimb movements. In addition, the implications of clustering remain unclear. To address these issues, we conducted two-photon calcium imaging of mouse layer 2/3 motor cortex during a self-initiated lever-pull task. In the imaging session after 8-9 days of training, head-restrained mice had to pull a lever for ∼600 ms to receive a water drop, and then had to wait for >3 s to pull it again. We found two types of task-related cells in the mice: cells whose peak activities occurred during lever pulls (pull cells) and cells whose peak activities occurred after the end of lever pulls. The activity of pull cells was strongly associated with lever-pull duration. In ∼40% of imaged fields, functional clusterings were temporally detected during the lever pulls. Spatially, there were ∼70-µm-scale clusters that consisted of more than four pull cells in ∼50% of the fields. Ensemble and individual activities of pull cells within the cluster more accurately predicted lever movement trajectories than activities of pull cells outside the cluster. This was likely because clustered pull cells were more often active in the individual trials than pull cells outside the cluster. This higher fidelity of activity was related to higher trial-to-trial correlations of activities of pairs within the cluster. We propose that strong recurrent network clusters may represent the execution of voluntary movements.


Subject(s)
Brain Mapping/methods , Motor Cortex/physiology , Movement/physiology , Neurons/physiology , Animals , Electromyography , Female , Male , Mice , Mice, Inbred C57BL
5.
J Neurophysiol ; 108(6): 1781-92, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22745461

ABSTRACT

Stereotaxic head fixation plays a necessary role in current physiological techniques, such as in vivo whole cell recording and two-photon laser-scanning microscopy, that are designed to elucidate the cortical involvement in animal behaviors. In rodents, however, head fixation often inhibits learning and performance of behavioral tasks. In particular, it has been considered inappropriate for head-fixed rodents to be operantly conditioned to perform skilled movements with their forelimb (e.g., lever-press task), despite the potential applicability of the task. Here we have solved this problem conceptually by integrating a lever (operandum) and a rewarding spout (reinforcer) into one ″spout-lever″ device for efficient operant learning. With this device, head-fixed rats reliably learned to perform a pull manipulation of the spout-lever with their right forelimb in response to an auditory cue signal (external-trigger trial, namely, Go trial) within several days. We also demonstrated stable whole cell recordings from motor cortex neurons while the rats were performing forelimb movements in external-trigger trials. We observed a behavior-related increase in the number of action potentials in membrane potential. In the next session, the rats, which had already learned the external-trigger trial, effortlessly performed similar spout-lever manipulation with no cue presentation (internal-trigger trial) additionally. Likewise, some of the rats learned to keep holding the spout-lever in response to another cue signal (No-go trial) in the following session, so that they mastered the Go/No-go discrimination task in one extra day. Our results verified the usefulness of spout-lever manipulation for behavioral experiments employing cutting-edge physiological techniques.


Subject(s)
Conditioning, Operant , Forelimb/physiology , Head/physiology , Movement/physiology , Reinforcement, Psychology , Restraint, Physical/instrumentation , Animals , Male , Patch-Clamp Techniques , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...