Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Ultrason Sonochem ; 107: 106930, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38830323

ABSTRACT

Cavitation erosion is one of the most severe problems encountered in hydraulic turbomachinery. When testing the materials, the engineers usually rely on standardized procedures. The most common one being the vibratory ASTM G-32 test, which offers two possibilities of performing the test - the direct, where the specimen is attached to the ultrasonic device and the indirect, where the specimen is stationary and exposed to the ultrasonic horn, positioned just 0.5 mm from it. The erosion rates from the two are significantly different and a question may be asked if they are at all comparable and further on are they comparable to the "real-life" hydrodynamic cavitation which occurs in turbomachinery. In this study we performed erosion tests on a stationary specimen where the gap between the specimen and the horn was varied from 0.3 to 4 mm. In addition, we used high speed visualization to observe the cavitation in the gap. We observed that the cavitation erosion rate strongly depends on the gap. From visualization we see that the cavitation dynamics significantly changes in a small gap, leading to a large, but 2-dimensional cavitation bubbles which collapse very slowly, compared to the small spherical ones in a larger gap. We investigated the probability of shock wave occurrence and derived a very simple model, which gives accurate qualitative predictions of experimental data. Finally, the study puts into question the validity of ASTM G32 test - the most common approach used in engineering today.

2.
Phys Rev Lett ; 132(10): 104004, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38518349

ABSTRACT

We reveal for the first time by experiments that within a narrow parameter regime, two cavitation bubbles with identical energy generated in antiphase develop a supersonic jet. High-resolution numerical simulation shows a mechanism for jet amplification based on toroidal shock wave and bubble necking interaction. The microjet reaches velocities in excess of 1000 m s^{-1}. We demonstrate that potential flow theory established for Worthington jets accurately predicts the evolution of the bubble gas-liquid interfaces unifying compressible and incompressible jet amplification.

3.
Ultrason Sonochem ; 104: 106810, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377804

ABSTRACT

The role of acoustic cavitation in various surface cleaning disciplines is important. However, the physical mechanisms underlying acoustic cavitation-induced surface cleansing are poorly understood. This is due to the combination of microscopic and ultrashort timescales associated with the dynamics of acoustic cavitation bubbles. Here, we have precisely controlled single-bubble cavitation in both space and time. Ultrasonic excitation leads to the cavitation of generated single bubbles. A synchronous ultrafast photomicrographic system simultaneously records the dynamics of single acoustic cavitation bubbles (SACBs) and the cleaning process of the nearby surface in liquids with varying viscosities. Finally, we analysed the correlation between bubble dynamics and surface cleaning situations. The differences in the typical dynamic characteristics of the bubbles during collapse in liquids with varying viscosities reveal two main mechanisms underlying surface cleaning by acoustic cavitation, which are respective the Laplace pressure during the bubble's movement and liquid jets during bubble collapse. Our study provides a better physical understanding of the ultrasonic cleaning process based on acoustic cavitation, and will help to optimize and facilitate the applications of surface cleaning, especially for the cleaning of substrates with tightly attached dirt.

4.
J Colloid Interface Sci ; 663: 518-531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38422977

ABSTRACT

HYPOTHESIS: The existing literature reports have conflicting views on reactive oxygen species (ROS) generation by bulk nanobubbles. Consequently, we propose the hypothesis that (i) ROS may be generated during the process of nanobubble generation through water splitting, and (ii) bulk nanobubbles possess electrochemical reactivity, which could potentially lead to continuous ROS generation even after the cessation of nanobubble production. EXPERIMENTS: A comprehensive set of experiments was conducted to generate nanobubbles in pure water using the water-splitting method. The primary aims of this study are as follows: (i) nanobubble generation by electrolysis and its characterization; (ii) to provide conclusive evidence that the nano-entities are indeed nanobubbles; (iii) to quantify the production of reactive oxygen species during the process of nanobubble generation and (iv) to establish evidence for the presence of electrochemically reactive nanobubbles. The findings of our experiment suggest that bulk nanobubbles possess the ability to generate reactive oxygen species (ROS) during the process of nanobubble nucleation. Additionally, our results indicate that bulk nanobubbles are electrochemically reactive after the cessation of nanobubble production. The electron spin spectroscopy (ESR) response and degradation of the dye compound over time confirm the electrochemical reactivity of bulk nanobubbles.

5.
Soft Matter ; 20(4): 823-836, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38167938

ABSTRACT

In this methods paper, we explore the capabilities of high-speed ultrasound imaging (USI) to study fast varying and complex multi-phase structures in liquids and soft materials. Specifically, we assess the advantages and the limitations of this imaging technique through three distinct experiments involving rapid dynamics: the underwater flow induced by an external jet, the dissolution of sub-micron bubbles in water, and the propagation of shear waves in a soft elastic material. The phenomena were simultaneously characterized using optical microscopy and USI. In water, we use compounded USI for tracking a multi-phase flow produced by a jetting bubble diving into a liquid pool at speeds around 20 m s-1. These types of jets are produced by focusing a single laser pulse below the liquid surface. Upon breakup, they create a bubbly flow that exhibits high reflectivity to the ultrasound signal, enabling the visualization of the subsequent turbulent flow. In a second experiment, we demonstrate the potential of USI for recording the diffusive shrinkage of micro- and nanobubbles in water that could not be optically resolved. Puncturing an elastic material with a liquid jet creates shear waves that can be utilized for elastography measurements. We analysed the shape and speed of shear waves produced by different types of jetting bubbles in industrial gelatin. The wave characteristics were simultaneously determined by implementing particle velocimetry in optical and ultrasound measurements. For the latter, we employed a novel method to create homogeneously distributed micro- and nanobubbles in gelatin by illuminating it with a collimated laser beam.

6.
Ultrason Sonochem ; 101: 106690, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37948892

ABSTRACT

As a safe and effective method for systemic transdermal drug delivery (TDD), sonophoresis has drawn much attention from researchers. Despite numerous studies confirming cavitation as the main reason for sonophoresis, the effect skin has on cavitation bubble dynamics remains elusive due to the difficulty of experimental challenges. For a start, we reveal how single cavitation bubble (SCB) dynamics are affected by skin properties, including elasticity, hydrophilicity and texture. We use polydimethylsiloxane (PDMS) to simulate human skin and record the temporary evolution of SCBs with synchronous ultrafast photography. The influences of skin properties on SCBs are concluded: 1) SCBs collapse later near walls with better elasticities and generate microjets with higher speed; 2) SCBs collapse later near hydrophilic walls with slower microjets; and 3) the existence of a texture structure on walls also delays the time of bubble collapse near them and slows the velocities of microjets (v) during collapses.


Subject(s)
Photography , Humans , Administration, Cutaneous , Hydrophobic and Hydrophilic Interactions
7.
Soft Matter ; 19(48): 9405-9412, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37990644

ABSTRACT

Elastography is a non-invasive technique to detect tissue anomalies via the local elastic modulus using shear waves. Commonly shear waves are produced via acoustic focusing or the use of mechanical external sources, shear waves may result also naturally from cavitation bubbles during medical intervention, for example from thermal ablation. Here, we measure the shear wave emitted from a well-controlled single laser-induced cavitation bubble oscillating near a rigid boundary. The bubbles are generated in a transparent tissue-mimicking hydrogel embedded with tracer particles. High-speed imaging of the tracer particles and the bubble shape allow quantifying the shear wave and relate it to the bubble dynamics. It is found that different stages of the bubble dynamics contribute to the shear wave generation and the mechanism of shear wave emission, its direction and the efficiency of energy converted into the shear wave depend crucially on the bubble to wall stand-off distance.

8.
Sci Rep ; 13(1): 18274, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880281

ABSTRACT

Revascularization via coronary artery bypass grafting (CABG) to treat cardiovascular disease is established as one of the most important lifesaving surgical techniques worldwide. But the shortage in functionally self-adaptive autologous arteries leads to circumstances where the clinical reality must deal with fighting pathologies coming from the mismatching biophysical functionality of more available venous grafts. Synthetic biomaterial-based CABG grafts did not make it to the market yet, what is mostly due to technical hurdles in matching biophysical properties to the complex demands of the CABG niche. But bacterial Nanocellulose (BNC) Hydrogels derived by growing biofilms hold a naturally integrative character in function-giving properties by its freedom in designing form and intrinsic fiber architecture. In this study we use this integral to combine impacts on the luminal fiber matrix, biomechanical properties and the reciprocal stimulation of microtopography and induced flow patterns, to investigate biomimetic and artificial designs on their bio-functional effects. Therefore, we produced tubular BNC-hydrogels at distinctive designs, characterized the structural and biomechanical properties and subjected them to in vitro endothelial colonization in bioreactor assisted perfusion cultivation. Results showed clearly improved functional properties and gave an indication of successfully realized stimulation by artery-typical helical flow patterns.


Subject(s)
Coronary Artery Bypass , Coronary Artery Disease , Humans , Coronary Artery Bypass/methods , Arteries , Biocompatible Materials , Hydrogels , Coronary Artery Disease/surgery , Treatment Outcome
9.
Ultrason Sonochem ; 98: 106530, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37515911

ABSTRACT

The interaction of surface acoustic waves (SAWs) with liquids enables the production of aerosols with adjustable droplet sizes in the micrometer range expelled from a very compact source. Understanding the nonlinear acousto-hydrodynamics of SAWs with a regulated micro-scale liquid film is essential for acousto-microfluidics platforms, particularly aerosol generators. In this study, we demonstrate the presence of micro-cavitation in a MHz-frequency SAW aerosol generation platform, which is touted as a leap in aerosol technology with versatile application fields including biomolecule inhalation therapy, micro-chromatography and spectroscopy, olfactory displays, and material deposition. Using analysis methods with high temporal and spatial resolution, we demonstrate that SAWs stabilize spatially arranged liquid micro-domes atop the generator's surface. Our experiments show that these liquid domes become acoustic resonators with highly fluctuating pressure amplitudes that can even nucleate cavitation bubbles, as supported by analytical modeling. The observed fragmentation of liquid domes indicates the participation of three droplet generation mechanisms, including cavitation and capillary-wave instabilities. During aerosol generation, the cavitation bubbles contribute to the ejection of droplets from the liquid domes and also explain observed microstructural damage patterns on the chip surface eventually caused by cavitation-based erosion.

10.
Langmuir ; 39(15): 5250-5262, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37014662

ABSTRACT

We have investigated the origin, stability, and nanobubble dynamics under an oscillating pressure field followed by the salting-out effects. The higher solubility ratio (salting-out parameter) of the dissolved gases and pure solvent nucleates nanobubbles during the salting-out effect, and the oscillating pressure field enhances the nanobubble density further as solubility varies linearly with gas pressure by Henry's law. A novel method for refractive index estimation is developed to differentiate nanobubbles and nanoparticles based on the scattering intensity of light. The electromagnetic wave equations have been numerically solved and compared with the Mie scattering theory. The scattering cross-section of the nanobubbles was estimated to be smaller than the nanoparticles. The DLVO potentials of the nanobubbles predict the stable colloidal system. The zeta potential of nanobubbles varied by generating nanobubbles in different salt solutions, and it is characterized by particle tracking, dynamic light scattering, and cryo-TEM. The size of nanobubbles in salt solutions was reported to be higher than that in pure water. The novel mechanical stability model is proposed by considering both ionic cloud and electrostatic pressure at the charged interface. The ionic cloud pressure is derived by electric flux balance, and it is found to be twice the electrostatic pressure. The mechanical stability model for a single nanobubble predicts the existence of stable nanobubbles in the stability map.

11.
Phys Rev Lett ; 130(6): 064003, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36827583

ABSTRACT

The line tension of a three-phase contact line is implicated in a wide variety of interfacial phenomena, but there is ongoing controversy, with existing measurements spanning six orders of magnitude in both signs. Here, we show that computationally obtained magnitudes, sign changes, and nontrivial variations of apparent line tension can be faithfully reproduced in a parsimonious model that incorporates only liquid-substrate interactions. Our results suggest that the origin for the remarkable variation lies in the failure of a widely used estimation method to eliminate body forces, leading measured line tensions to behave like an extensive quantity.

12.
Ultrason Sonochem ; 94: 106321, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36774673

ABSTRACT

We have demonstrated the production of laser bulk nanobubbles (BNB) with ambient radii typically below 500 nm. The gaseous nature of the nanometric objects was confirmed by a focused acoustic pulse that expands the gas cavities to a size that can be visualized with optical microscopy. The BNBs were produced on demand by a collimated high-energy laser pulse in a "clean" way, meaning that no solid particles or drops were introduced in the sample by the generation method. This is a clear advantage relative to the other standard BNB production techniques. Accordingly, the role of nanometric particles in laser bubble production is discussed. The characteristics of the nanobubbles were evaluated with two alternative methods. The first one measures the response of the BNBs to acoustic pulses of increasing amplitude to estimate their rest radius through the calculation of the dynamics Blake threshold. The second one is based on the bubble dissolution dynamics and the correlation of the bubble's lifetime with its initial size. The high reproducibility of the present system in combination with automated data acquisition and analysis constitutes a sound tool for studying the effects of the liquid and gas properties on the stability of the BNBs solution.

13.
Biomed Opt Express ; 13(10): 5202-5211, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36425620

ABSTRACT

The collapse of a laser-induced vapor bubble near a solid boundary usually ends in a liquid jet. When the boundary is from a soft material the jetting may pierce the liquid-solid interface and result in the injection of liquid into it. A particular impulsive jet flow can be generated when a laser pulse is focused just below the free surface of a thin liquid layer covering a gelatin sample used as a surrogate of biological tissue. Here, a downwards jet forms from a liquid splash at the free surface and then penetrates through the liquid layer into the soft boundary. In the present manuscript we report on the use of this novel jet, termed "bullet" jet, to pierce soft materials and we explore its potential to become an optical needle-free injection platform. The dynamics and depth of the injection is studied as a function of the elasticity of the solid and the liquid properties. Injections of up to 4 mm deep into 4 %w/w gelatin within 0.5 ms are observed. The advantages of the bullet jet over other kinds of impulsively generated jets with lasers are discussed.

14.
Ultrason Sonochem ; 90: 106131, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36274417

ABSTRACT

The ability of cavitation bubbles to effectively focus energy is made responsible for cavitation erosion, traumatic brain injury, and even for catalyse chemical reactions. Yet, the mechanism through which material is eroded remains vague, and the extremely fast and localized dynamics that lead to material damage has not been resolved. Here, we reveal the decisive mechanism that leads to energy focusing during the non-spherical collapse of cavitation bubbles and eventually results to the erosion of hardened metals. We show that a single cavitation bubble at ambient pressure close to a metal surface causes erosion only if a non-axisymmetric energy self-focusing is at play. The bubble during its collapse emits shockwaves that under certain conditions converge to a single point where the remaining gas phase is driven to a shockwave-intensified collapse. We resolve the conditions under which this self-focusing enhances the collapse and damages the solid. High-speed imaging of bubble and shock wave dynamics at sub-picosecond exposure times is correlated to the shockwaves recorded with large bandwidth hydrophones. The material damage from several metallic materials is detected in situ and quantified ex-situ via scanning electron microscopy and confocal profilometry. With this knowledge, approaches to mitigate cavitation erosion or to even enhance the energy focusing are within reach.

15.
Opt Express ; 30(21): 37664-37674, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258350

ABSTRACT

Shock wave visual detection was traditionally performed using streak cameras, limited to homogeneous shock wave emission, with the corresponding shock wave pressure measurements available at rather large distances or numerically estimated through equation of state for water. We demonstrate a multi-frame multi-exposure shock wave velocity measurement technique for all in-plane directions of propagation, based on custom-built illumination system allowing multiple illumination pulses within each frame at multi-MHz frame rates and at up to 200 MHz illumination pulse repetition frequency at sub-nanosecond pulse durations. The measurements are combined and verified using a fiber-optic probe hydrophone, providing independent shock wave pressure and time-of-flight measurements, creating a novel all-optical measurement setup. The measured pressures at distances around 100 µm from the plasma center exceed 500 MPa, while camera-based measurements at even shorter distances indicate pressures above 1 GPa.

17.
Micromachines (Basel) ; 13(5)2022 May 17.
Article in English | MEDLINE | ID: mdl-35630249

ABSTRACT

The motion of bubbles in an ultrasonic field is a fundamental physical mechanism in most applications of acoustic cavitation. In these applications, surface-active solutes, which could lower the surface tension of the liquid, are always utilized to improve efficiency by reducing the cavitation threshold. This paper examines the influence of liquids' surface tension on single micro-bubbles motion in an ultrasonic field. A novel experimental system based on high-speed photography has been designed to investigate the temporary evolution of a single bubble in the free-field exposed to a 20.43 kHz ultrasound in liquids with different surface tensions. In addition, the R-P equations in the liquid with different surface tension are solved. It is found that the influences of the surface tension on the bubble dynamics are obvious, which reflect on the changes in the maximum size and speed of the bubble margin during bubble oscillating, as well as the weaker stability of the bubble in the liquid with low surface tension, especially for the oscillating bubble with higher speed. These effects of the surface tension on the bubble dynamics can explain the mechanism of surfactants for promoting acoustic cavitation in numerous application fields.

18.
Phys Rev Lett ; 128(19): 194501, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35622029

ABSTRACT

We demonstrate that besides gaseous pockets also a gas supersaturated spot on a substrate can be a nucleus for cavitation. The supersaturation is achieved by either a formerly dissolved bubble or by heating locally the surface below the boiling temperature. The experiments are conducted in a thin film of water; one side of the water film is in contact with a gold coated substrate that is heated by a continuous laser through plasmonic heating. For nucleation of a bubble, the pressure at the heated spot is reduced by a transient rarefaction wave. The experimental findings suggest that the local gas supersaturation is responsible to nucleate cavitation and thus connects the phase transitions of cavitation and boiling. Additionally, the pressure waves in the liquid gap are studied numerically.

19.
J Colloid Interface Sci ; 606(Pt 2): 1380-1394, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34492474

ABSTRACT

The mechanism leading to the extraordinary stability of bulk nanobubbles in aqueous solutions remains an outstanding problem in soft matter, modern surface science, and physical chemistry science. In this work, the stability of bulk nanobubbles in electrolyte solutions under different pH levels and ionic strengths is studied. Nanobubbles are generated via the technique of ultrasonic cavitation, and characterized for size, number concentration and zeta potential under ambient conditions. Experimental results show that nanobubbles can survive in both acidic and basic solutions with pH values far away from the isoelectric point. We attribute the enhanced stability with increasing acidity or alkalinity of the aqueous solutions to the effective accumulation of net charges, regardless of their sign. The kinetic stability of the nanobubbles in various aqueous solutions is evaluated within the classic DLVO framework. Further, by combining a modified Poisson-Boltzmann equation with a modified Langmuir adsorption model, we describe a simple model that captures the influence of ion species and bulk concentration and reproduce the dependence of the nanobubble's surface potential on pH. We also discuss the apparent contradiction between quantitative calculation by ion stabilization model and experimental results. This essentially requires insight into the structure and dynamics of interfacial water on the atomic-scale.

20.
Ultrason Sonochem ; 78: 105735, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34479075

ABSTRACT

Acoustic cavitation is a very important hydrodynamic phenomenon, and is often implicated in a myriad of industrial, medical, and daily living applications. In these applications, the effect mechanism of liquid surface tension on improving the efficiency of acoustic cavitation is a crucial concern for researchers. In this study, the effects of liquid surface tension on the dynamics of an ultrasonic driven bubble near a rigid wall, which could be the main mechanism of efficiency improvement in the applications of acoustic cavitation, were investigated at the microscale level. A synchronous high-speed microscopic imaging method was used to clearly record the temporary evolution of single acoustic cavitation bubble in the liquids with different surface tension. Meanwhile, the bubble dynamic characteristics, such as the position and time of bubble collapse, the size and stability of the bubbles, the speed of bubble boundaries and the micro-jets, were analyzed and compared. In the case of the single bubbles near a rigid wall, it was found that low surface tension reduces the stability of the bubbles in the liquid medium. Meanwhile, the bubbles collapse earlier and farther from the rigid wall in the liquids with lower surface tension. In addition, the surface tension has no significant influence on the speed of the first micro-jet, but it can substantially increase the speed of second and the third micro-jets after the first collapse of the bubble. These effects of liquid surface tension on the bubble dynamics can explain the mechanism of surfactants in numerous fields of acoustic cavitation for facilitating its optimization and application.

SELECTION OF CITATIONS
SEARCH DETAIL
...