Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Front Cell Neurosci ; 18: 1369047, 2024.
Article in English | MEDLINE | ID: mdl-38660672

ABSTRACT

Introduction: The emergent coherent population activity from thousands of stochastic neurons in the brain is believed to constitute a key neuronal mechanism for salient processing of external stimuli and its link to internal states like attention and perception. In the sensory cortex, functional cell assemblies are formed by recurrent excitation and inhibitory influences. The stochastic dynamics of each cell involved is largely orchestrated by presynaptic CAV2.1 voltage-gated calcium channels (VGCCs). Cav2.1 VGCCs initiate the release of neurotransmitters from the presynaptic compartment and are therefore able to add variability into synaptic transmission which can be partly explained by their mobile organization around docked vesicles. Methods: To investigate the relevance of Cav2.1 channel surface motility for the input processing in the primary auditory cortex (A1) in vivo, we make use of a new optogenetic system which allows for acute, reversable cross-linking Cav2.1 VGCCs via a photo-cross-linkable cryptochrome mutant, CRY2olig. In order to map neuronal activity across all cortical layers of the A1, we performed laminar current-source density (CSD) recordings with varying auditory stimulus sets in transgenic mice with a citrine tag on the N-terminus of the VGCCs. Results: Clustering VGCCs suppresses overall sensory-evoked population activity, particularly when stimuli lead to a highly synchronized distribution of synaptic inputs. Discussion: Our findings reveal the importance of membrane dynamics of presynaptic calcium channels for sensory encoding by dynamically adjusting network activity across a wide range of synaptic input strength.

2.
Front Comput Neurosci ; 17: 1145267, 2023.
Article in English | MEDLINE | ID: mdl-37303589

ABSTRACT

The processing of incoming sensory information can be differentially affected by varying levels of α-power in the electroencephalogram (EEG). A prominent hypothesis is that relatively low prestimulus α-power is associated with improved perceptual performance. However, there are studies in the literature that do not fit easily into this picture, and the reasons for this are poorly understood and rarely discussed. To evaluate the robustness of previous findings and to better understand the overall mixed results, we used a spatial TOJ task in which we presented auditory and visual stimulus pairs in random order while recording EEG. For veridical and non-veridical TOJs, we calculated the power spectral density (PSD) for 3 frequencies (5 Hz steps: 10, 15, and 20 Hz). We found on the group level: (1) Veridical auditory TOJs, relative to non-veridical, were associated with higher ß-band (20 Hz) power over central electrodes. (2) Veridical visual TOJs showed higher ß-band (10, 15 Hz) power over parieto-occipital electrodes (3) Electrode site interacted with TOJ condition in the ß-band: For auditory TOJs, PSD over central electrodes was higher for veridical than non-veridical and over parieto-occipital electrodes was lower for veridical than non-veridical trials, while the latter pattern was reversed for visual TOJs. While our group-level result showed a clear direction of prestimulus modulation, the individual-level modulation pattern was variable and included activations opposite to the group mean. Interestingly, our results at the individual-level mirror the situation in the literature, where reports of group-level prestimulus modulation were found in either direction. Because the direction of individual activation of electrodes over auditory brain regions and parieto-occipital electrodes was always negatively correlated in the respective TOJ conditions, this activation opposite to the group mean cannot be easily dismissed as noise. The consistency of the individual-level data cautions against premature generalization of group-effects and suggests different strategies that participants initially adopted and then consistently followed. We discuss our results in light of probabilistic information processing and complex system properties, and suggest that a general description of brain activity must account for variability in modulation directions at both the group and individual levels.

3.
eNeuro ; 10(2)2023 02.
Article in English | MEDLINE | ID: mdl-36750361

ABSTRACT

Science is changing: the volume and complexity of data are increasing, the number of studies is growing and the goal of achieving reproducible results requires new solutions for scientific data management. In the field of neuroscience, the German National Research Data Infrastructure (NFDI-Neuro) initiative aims to develop sustainable solutions for research data management (RDM). To obtain an understanding of the present RDM situation in the neuroscience community, NFDI-Neuro conducted a comprehensive survey among the neuroscience community. Here, we report and analyze the results of the survey. We focused the survey and our analysis on current needs, challenges, and opinions about RDM. The German neuroscience community perceives barriers with respect to RDM and data sharing mainly linked to (1) lack of data and metadata standards, (2) lack of community adopted provenance tracking methods, (3) lack of secure and privacy preserving research infrastructure for sensitive data, (4) lack of RDM literacy, and (5) lack of resources (time, personnel, money) for proper RDM. However, an overwhelming majority of community members (91%) indicated that they would be willing to share their data with other researchers and are interested to increase their RDM skills. Taking advantage of this willingness and overcoming the existing barriers requires the systematic development of standards, tools, and infrastructure, the provision of training, education, and support, as well as additional resources for RDM to the research community and a constant dialogue with relevant stakeholders including policy makers to leverage of a culture change through adapted incentivization and regulation.


Subject(s)
Biomedical Research , Neurosciences , Data Management , Surveys and Questionnaires , Information Dissemination
4.
J Neurosci ; 42(10): 2025-2038, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35064004

ABSTRACT

Functional hemispheric lateralization is a basic principle of brain organization. In the auditory domain, the right auditory cortex (AC) determines the pitch direction of continuous auditory stimuli whereas the left AC discriminates gaps in these stimuli. The involved functional interactions between the two sides, mediated by commissural connections, are poorly understood. Here, we selectively disrupted the interhemispheric cross talk from the left to the right primary AC and vice versa using chromophore-targeted laser-induced apoptosis of the respective projection neurons, which make up 6-17% of all AC neurons in Layers III, V, and VI. Following photolysis, male gerbils were trained in a first experimental set to discriminate between rising and falling frequency-modulated (FM) tone sweeps. The acquisition of the task was significantly delayed in lesioned animals of either lesion direction. However, the final discrimination performance and hit rate was lowest for animals with left-side lesioned commissural neurons, demonstrating that also information from the left AC is relevant for FM direction learning. Photolysis after successful learning did not affect the retrieval of the learned task, indicating that the disruption during learning was not because of a general functional impairment. In a second experimental set, the gerbil's ability to detect and discriminate small silent gaps of varying length within FM sweeps was tested. This ability was also preserved after interhemispheric disruption. Taken together, interhemispheric communication between the left and right AC is important for the acquisition of FM tone direction learning but not for its retrieval and for gap detection and gap duration discrimination.SIGNIFICANCE STATEMENT Hemispheric lateralization of neuronal functions such as speech and music processing in humans are common throughout the brain; however, the involved interhemispheric interactions are ill-defined. Here, we show that the selective photolytic disruption of auditory cortical commissural connections in rodents impairs the acquisition but not retrieval of a frequency-modulated tone direction discrimination task. The final discrimination performance and hit rate was lowest for animals with lesioned left-to-right-side projections; thus, although right auditory cortex is dominant, left auditory cortex is also relevant for learning this task. The detection and discrimination of small gaps within the tone sweeps remain intact, suggesting a pathway for the processing of these temporal structures, which could be independent from the lesioned interhemispheric cross talk.


Subject(s)
Auditory Cortex , Discrimination Learning , Acoustic Stimulation , Animals , Auditory Cortex/physiology , Discrimination Learning/physiology , Gerbillinae/physiology , Male , Pitch Discrimination
5.
Neural Netw ; 144: 699-725, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34673323

ABSTRACT

Decentralization is a central characteristic of biological motor control that allows for fast responses relying on local sensory information. In contrast, the current trend of Deep Reinforcement Learning (DRL) based approaches to motor control follows a centralized paradigm using a single, holistic controller that has to untangle the whole input information space. This motivates to ask whether decentralization as seen in biological control architectures might also be beneficial for embodied sensori-motor control systems when using DRL. To answer this question, we provide an analysis and comparison of eight control architectures for adaptive locomotion that were derived for a four-legged agent, but with their degree of decentralization varying systematically between the extremes of fully centralized and fully decentralized. Our comparison shows that learning speed is significantly enhanced in distributed architectures-while still reaching the same high performance level of centralized architectures-due to smaller search spaces and local costs providing more focused information for learning. Second, we find an increased robustness of the learning process in the decentralized cases-it is less demanding to hyperparameter selection and less prone to becoming trapped in poor local minima. Finally, when examining generalization to uneven terrains-not used during training-we find best performance for an intermediate architecture that is decentralized, but integrates only local information from both neighboring legs. Together, these findings demonstrate beneficial effects of distributing control into decentralized units and relying on local information. This appears as a promising approach towards more robust DRL and better generalization towards adaptive behavior.

6.
Front Neural Circuits ; 15: 659280, 2021.
Article in English | MEDLINE | ID: mdl-34322001

ABSTRACT

Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns. We have used laminar current-source density (CSD) recordings of tone-evoked responses and could show that, particularly, lesion of CT neurons in layer VI affected cortical frequency processing. Specifically, we found a decreased gain of best-frequency input in thalamocortical (TC)-recipient input layers that correlated with the relative lesion of layer VI neurons, but not layer V neurons. Using cortical silencing with the GABA a -agonist muscimol and layer-specific intracortical microstimulation (ICMS), we found that direct activation of infragranular layers recruited a local recurrent cortico-thalamo-cortical loop of synaptic input. This recurrent feedback was also only interrupted when lesioning layer VI neurons, but not cells in layer V. Our study thereby shows distinct roles of these two types of CT neurons suggesting a particular impact of CT feedback from layer VI to affect the local feedforward frequency processing in auditory cortex.


Subject(s)
Apoptosis/physiology , Auditory Cortex/physiology , Feedback, Physiological/physiology , Lasers/adverse effects , Neurons/physiology , Thalamus/physiology , Acoustic Stimulation/methods , Animals , Apoptosis/drug effects , Auditory Cortex/drug effects , Auditory Cortex/pathology , Feedback, Physiological/drug effects , GABA-A Receptor Agonists/pharmacology , Gerbillinae , Male , Neural Pathways/drug effects , Neural Pathways/pathology , Neural Pathways/physiology , Neurons/drug effects , Neurons/pathology , Thalamus/drug effects , Thalamus/pathology
7.
Front Syst Neurosci ; 15: 641684, 2021.
Article in English | MEDLINE | ID: mdl-33967706

ABSTRACT

This work studies the evolution of cortical networks during the transition from escape strategy to avoidance strategy in auditory discrimination learning in Mongolian gerbils trained by the well-established two-way active avoidance learning paradigm. The animals were implanted with electrode arrays centered on the surface of the primary auditory cortex and electrocorticogram (ECoG) recordings were made during performance of an auditory Go/NoGo discrimination task. Our experiments confirm previous results on a sudden behavioral change from the initial naïve state to an avoidance strategy as learning progresses. We employed two causality metrics using Granger Causality (GC) and New Causality (NC) to quantify changes in the causality flow between ECoG channels as the animals switched to avoidance strategy. We found that the number of channel pairs with inverse causal interaction significantly increased after the animal acquired successful discrimination, which indicates structural changes in the cortical networks as a result of learning. A suitable graph-theoretical model is developed to interpret the findings in terms of cortical networks evolving during cognitive state transitions. Structural changes lead to changes in the dynamics of neural populations, which are described as phase transitions in the network graph model with small-world connections. Overall, our findings underscore the importance of functional reorganization in sensory cortical areas as a possible neural contributor to behavioral changes.

8.
J Neural Eng ; 18(4)2021 04 26.
Article in English | MEDLINE | ID: mdl-33908896

ABSTRACT

Objective. In tetrode recordings, the cell types of the recorded units are difficult to determine based on electrophysiological characteristics alone. Optotagging, the use of optogenetic stimulation to precisely identify cells, is a method to overcome this challenge. However, recording from many different cells requires advancing electrodes and light sources slowly through the brain with a microdrive. Existing designs suffer from a number of drawbacks, such as limited stability and precision, high cost, complex assembly, or excessive size and weight.Approach. We designed TetrODrive as a microdrive that can be 3D printed on an inexpensive desktop resin printer, has minimal parts, assembly time, and cost. The microdrive can be assembled in 15 min and the price for all materials, including the 3D printer, is lower than a single commercial microdrive. To maximize recording stability, we mechanically decoupled the drive mechanism from the electrical and optical connectors.Main results. The developed microdrive is small and light enough (<1.5 g) to be carried effortlessly by a mouse. It allows reliable recordings from single units and optogenetically identified units, even across recording sessions. In contrast to previous designs, it provides a decoupling of plugging forces from the main drive body for enhanced stability. Owing to its moveable optical fiber, our microdrive can also be used for fiber photometry. The cost of a single drive is below 20 €. We evaluated our microdrive by recording single units and calcium signals in the ventral tegmental area of mice and confirmed cell identity via optotagging. Thereby we found units not following the classical reward prediction error model.Significance. TetrODrive is a tiny, lightweight, and affordable microdrive for optophysiology in mice. Its open design, price, and built-in characteristics can significantly expand the use of microdrives in mice.


Subject(s)
Electrophysiological Phenomena , Optogenetics , Animals , Brain , Electrodes , Electrodes, Implanted , Electrophysiology , Mice , Microelectrodes
9.
Front Neural Circuits ; 15: 786740, 2021.
Article in English | MEDLINE | ID: mdl-35069125

ABSTRACT

The auditory thalamus is the central nexus of bottom-up connections from the inferior colliculus and top-down connections from auditory cortical areas. While considerable efforts have been made to investigate feedforward processing of sounds in the auditory thalamus (medial geniculate body, MGB) of non-human primates, little is known about the role of corticofugal feedback in the MGB of awake non-human primates. Therefore, we developed a small, repositionable cooling probe to manipulate corticofugal feedback and studied neural responses in both auditory cortex and thalamus to sounds under conditions of normal and reduced cortical temperature. Cooling-induced increases in the width of extracellularly recorded spikes in auditory cortex were observed over the distance of several hundred micrometers away from the cooling probe. Cortical neurons displayed reduction in both spontaneous and stimulus driven firing rates with decreased cortical temperatures. In thalamus, cortical cooling led to increased spontaneous firing and either increased or decreased stimulus driven activity. Furthermore, response tuning to modulation frequencies of temporally modulated sounds and spatial tuning to sound source location could be altered (increased or decreased) by cortical cooling. Specifically, best modulation frequencies of individual MGB neurons could shift either toward higher or lower frequencies based on the vector strength or the firing rate. The tuning of MGB neurons for spatial location could both sharpen or widen. Elevation preference could shift toward higher or lower elevations and azimuth tuning could move toward ipsilateral or contralateral locations. Such bidirectional changes were observed in many parameters which suggests that the auditory thalamus acts as a filter that could be adjusted according to behaviorally driven signals from auditory cortex. Future work will have to delineate the circuit elements responsible for the observed effects.


Subject(s)
Auditory Cortex , Acoustic Stimulation , Animals , Callithrix , Geniculate Bodies , Thalamus , Wakefulness
10.
J Neural Eng ; 17(4): 046014, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32705997

ABSTRACT

OBJECTIVE: A number of tissue penetrating opto-electrodes to simultaneously record and optogenetically influence brain activity have been developed. For experiments at the surface of the brain, such as electrocorticogram (ECoG) recordings and surface optogenetics, fewer devices have been described and no device has found widespread adoption for neuroscientific experiments. One issue slowing adoption is the complexity and fragility of existing devices, typically based on transparent electrode materials like graphene and indium-tin oxide (ITO). We focused here on improving existing processes based on metal traces and polyimide (PI), which produce more robust and cost-effective devices, to develop a multi-electrode array for optophysiology. APPROACH: The most widely used substrate material for surface electrodes, PI, has seen little use for optophysiologicalµECoG/ECoG arrays. This is due to its lack of transparency at optogenetically relevant short wavelengths. Here we use very thin layers of PI in combination with chrome-gold-platinum electrodes to achieve the necessary substrate transparency and high mechanical flexibility in a device that still rejects light artifacts well. MAIN RESULTS: The manufactured surface arrays have a thickness of only 6.5 µm, resulting in 80% transparency for blue light. We demonstrate immunity against opto-electric artifacts, long term stability and biocompatibility as well as suitability for optical voltage imaging. The biocompatible arrays are capable of recording stable ECoGs over months without any measurable degradation and can be used to map the tonotopic organization of the curved rodent auditory cortex. SIGNIFICANCE: Our novel probes combine proven materials and processing steps to create optically near-transparent electrode arrays with superior longevity. In contrast to previous opto-electrodes, our probes are simple to manufacture, robust, offer long-term stability, and are a practical engineering solution for optophysiological experiments not requiring transparency of the electrode sites themselves.


Subject(s)
Graphite , Optogenetics , Electrodes , Electrophysiological Phenomena , Electrophysiology
11.
Commun Biol ; 3(1): 345, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620808

ABSTRACT

The primary auditory cortex (A1) is an essential, integrative node that encodes the behavioral relevance of acoustic stimuli, predictions, and auditory-guided decision-making. However, the realization of this integration with respect to the cortical microcircuitry is not well understood. Here, we characterize layer-specific, spatiotemporal synaptic population activity with chronic, laminar current source density analysis in Mongolian gerbils (Meriones unguiculatus) trained in an auditory decision-making Go/NoGo shuttle-box task. We demonstrate that not only sensory but also task- and choice-related information is represented in the mesoscopic neuronal population code of A1. Based on generalized linear-mixed effect models we found a layer-specific and multiplexed representation of the task rule, action selection, and the animal's behavioral options as accumulating evidence in preparation of correct choices. The findings expand our understanding of how individual layers contribute to the integrative circuit in the sensory cortex in order to code task-relevant information and guide sensory-based decision-making.


Subject(s)
Acoustic Stimulation , Auditory Cortex/physiology , Auditory Perception , Evoked Potentials, Auditory , Gerbillinae/physiology , Task Performance and Analysis , Animals , Behavior, Animal , Male
12.
PLoS One ; 15(6): e0233589, 2020.
Article in English | MEDLINE | ID: mdl-32525940

ABSTRACT

Brain function requires the flexible coordination of billions of neurons across multiple scales. This could be achieved by scale-free, critical dynamics balanced at the edge of order and disorder. Criticality has been demonstrated in several, often reduced neurophysiological model systems. In the intact human brain criticality has yet been only verified for the resting state. A more direct link between the concept of criticality and oscillatory brain physiology, which is strongly related to cognition, is yet missing. In the present study we therefore carried out a frequency-specific analysis of criticality in the MEG, recorded while subjects were in a defined cognitive state through mindfulness meditation. In a two-step approach we assessed whether the macroscopic neural avalanche dynamics is scale-free by evaluating the goodness of a power-law fits of cascade size and duration distributions of MEG deflections in different frequency bands. In a second step we determined the closeness of the power-law exponents to a critical value of -1.5. Power-law fitting was evaluated by permutation testing, fitting of alternative distributions, and cascade shape analysis. Criticality was verified by defined relationships of exponents of cascade size and duration distributions. Behavioral relevance of criticality was tested by correlation of indices of criticality with individual scores of the Mindful Attention Awareness Scale. We found that relevant scale-free near-critical dynamics originated only from broad-band high-frequency (> 100 Hz) MEG activity, which has been associated with action potential firing, and therefore links criticality on the macroscopic level of MEG to critical spike avalanches on a microscopic level. Whereas a scale-free dynamics was found under mindfulness meditation and rest, avalanche dynamics shifted towards a critical point during meditation by reduction of neural noise. Together with our finding that during mindfulness meditation avalanches show differences in topography relative to rest, our results show that self-regulated attention as required during meditation can serve as a control parameter of criticality in scale-free brain dynamics.


Subject(s)
Brain/physiology , Magnetoencephalography , Mindfulness , Models, Neurological , Self-Control , Adult , Female , Healthy Volunteers , Humans , Male , Young Adult
13.
Front Neurosci ; 14: 306, 2020.
Article in English | MEDLINE | ID: mdl-32372903

ABSTRACT

The current study aimed to resolve some of the inconsistencies in the literature on which mental processes affect auditory cortical activity. To this end, we studied auditory cortical firing in four monkeys with different experience while they were involved in six conditions with different arrangements of the task components sound, motor action, and water reward. Firing rates changed most strongly when a sound-only condition was compared to a condition in which sound was paired with water. Additional smaller changes occurred in more complex conditions in which the monkeys received water for motor actions before or after sounds. Our findings suggest that auditory cortex is most strongly modulated by the subjects' level of arousal, thus by a psychological concept related to motor activity triggered by reinforcers and to readiness for operant behavior. Our findings also suggest that auditory cortex is involved in associative and emotional functions, but not in agency and cognitive effort.

14.
J Physiol ; 598(13): 2741-2755, 2020 07.
Article in English | MEDLINE | ID: mdl-32329905

ABSTRACT

KEY POINTS: Ketamine is a common anaesthetic agent used in research and more recently as medication in treatment of depression. It has known effects on inhibition of interneurons and cortical stimulus-locked responses, but the underlying functional network mechanisms are still elusive. Analysing population activity across all layers within the auditory cortex, we found that doses of this anaesthetic induce a stronger activation and stimulus-locked response to pure-tone stimuli. This cortical response is driven by gain enhancement of thalamocortical input processing selectively within granular layers due to an increased recurrent excitation. Time-frequency analysis indicates a higher broadband magnitude response and prolonged phase coherence in granular layers, possibly pointing to disinhibition of this recurrent excitation. These results further the understanding of ketamine's functional mechanisms, which will improve the ability to interpret physiological studies moving from anaesthetized to awake paradigms and may lead to the development of better ketamine-based depression treatments with lower side effects. ABSTRACT: Ketamine is commonly used as an anaesthetic agent and has more recently gained attention as an antidepressant. It has been linked to increased stimulus-locked excitability, inhibition of interneurons and modulation of intrinsic neuronal oscillations. However, the functional network mechanisms are still elusive. A better understanding of these anaesthetic network effects may improve upon previous interpretations of seminal studies conducted under anaesthesia and have widespread relevance for neuroscience with awake and anaesthetized subjects as well as in medicine. Here, we investigated the effects of anaesthetic doses of ketamine (15 mg kg-1  h-1 i.p.) on the network activity after pure-tone stimulation within the auditory cortex of male Mongolian gerbils (Meriones unguiculatus). We used laminar current source density (CSD) analysis and subsequent layer-specific continuous wavelet analysis to investigate spatiotemporal response dynamics on cortical columnar processing in awake and ketamine-anaesthetized animals. We found thalamocortical input processing within granular layers III/IV to be significantly increased under ketamine. This layer-dependent gain enhancement under ketamine was not due to changes in cross-trial phase coherence but was rather attributed to a broadband increase in magnitude reflecting an increase in recurrent excitation. A time-frequency analysis was indicative of a prolonged period of stimulus-induced excitation possibly due to a reduced coupling of excitation and inhibition in granular input circuits - in line with the common hypothesis of cortical disinhibition via suppression of GABAergic interneurons.


Subject(s)
Anesthesia , Auditory Cortex , Ketamine , Animals , Gerbillinae , Humans , Ketamine/pharmacology , Male , Neurons
15.
Front Neurosci ; 14: 598406, 2020.
Article in English | MEDLINE | ID: mdl-33469416

ABSTRACT

Harmful environmental sounds are a prevailing source of chronic hearing impairments, including noise induced hearing loss, hyperacusis, or tinnitus. How these symptoms are related to pathophysiological damage to the sensory receptor epithelia and its effects along the auditory pathway, have been documented in numerous studies. An open question concerns the temporal evolution of maladaptive changes after damage and their manifestation in the balance of thalamocortical and corticocortical input to the auditory cortex (ACx). To address these issues, we investigated the loci of plastic reorganizations across the tonotopic axis of the auditory cortex of male Mongolian gerbils (Meriones unguiculatus) acutely after a sound trauma and after several weeks. We used a residual current-source density analysis to dissociate adaptations of intracolumnar input and horizontally relayed corticocortical input to synaptic populations across cortical layers in ACx. A pure tone-based sound trauma caused acute changes of subcortical inputs and corticocortical inputs at all tonotopic regions, particularly showing a broad reduction of tone-evoked inputs at tonotopic regions around the trauma frequency. At other cortical sites, the overall columnar activity acutely decreased, while relative contributions of lateral corticocortical inputs increased. After 4-6 weeks, cortical activity in response to the altered sensory inputs showed a general increase of local thalamocortical input reaching levels higher than before the trauma. Hence, our results suggest a detailed mechanism for overcompensation of altered frequency input in the auditory cortex that relies on a changing balance of thalamocortical and intracortical input and along the frequency gradient of the cortical tonotopic map.

16.
Eur J Neurosci ; 51(5): 1315-1327, 2020 03.
Article in English | MEDLINE | ID: mdl-29514417

ABSTRACT

Cortical release of the neurotransmitter dopamine has been implied in adapting cortical processing with respect to various functions including coding of stimulus salience, expectancy, error prediction, behavioral relevance and learning. Dopamine agonists have been shown to modulate recurrent cortico-thalamic feedback, and should therefore also affect synchronization and amplitude of thalamo-cortical oscillations. In this study, we have used multitaper spectral and time-frequency analysis of stimulus-evoked and spontaneous current source density patterns in primary auditory cortex of Mongolian gerbils to characterize dopaminergic neuromodulation of the oscillatory structure of current sources and sinks. We systemically applied D1/D5-receptor agonist SKF-38393 followed by competitive D1/D5-receptor antagonist SCH-23390. Our results reveal an increase in stimulus phase-locking in the high gamma-band (88-97 Hz) by SKF-38393, specifically in layers III/IV at the best frequency, which occurred at 20 ms after tone onset, and was reversed by SCH-23390. However, changes in induced oscillatory power after SKF-38393 treatment occurred stimulus-independently in the background activity in different layers than phase-locking effects and were not reversed by SCH-23390. These effects might either reflect longer-lasting changes in neural background noise, non-specific changes due to ketamine anesthesia, or an interaction of both. Without concomitant stimulus-induced power increase, increased stimulus phase-locking in layers III/IV indicates enhanced phase-resetting of neural oscillations by the stimulus after D1/D5-receptor activation. The frequency characteristics, together with the demonstrated stimulus specificity and layer specificity, suggest that changes in phase-resetting originate from dopaminergic neuromodulation of thalamo-cortical interactions. Enhanced phase-resetting might be a key step in the recruitment of cortical activity modes interpreting sensory input.


Subject(s)
Auditory Cortex , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Dopamine , Gerbillinae , Receptors, Dopamine D1
17.
Brain Stimul ; 13(2): 363-371, 2020.
Article in English | MEDLINE | ID: mdl-31812449

ABSTRACT

BACKGROUND: Optogenetic stimulation has grown into a popular brain stimulation method in basic neuroscience while electrical stimulation predominates in clinical applications. In order to explain the effects of electrical stimulation on a cellular level and evaluate potential advantages of optogenetic therapies, comparisons between the two stimulation modalities are necessary. This comparison is hindered, however, by the difficulty of effectively matching the two fundamentally different modalities. OBJECTIVE: Comparison of brain-wide activation patterns in response to intensity-matched electrical and optogenetic VTA stimulation. METHODS: We mapped optogenetic and electrical self-stimulation rates in the same mice over stimulation intensity and determined iso-behavioral intensities. Using functional 99mTc-HMPAO SPECT imaging of cerebral blood flow in awake animals, we obtained brain-wide activation patterns for both modalities at these iso-behavioral intensities. We performed these experiments in two mouse lines commonly used for optogenetic VTA stimulation, DAT::Cre and TH::Cre mice. RESULTS: We find iso-behavioral intensity matching of stimulation gives rise to similar brain activation patterns. Differences between mouse lines were more pronounced than differences between modalities. CONCLUSIONS: Previously found large differences of electrical and optogenetic stimulation might be due to unmatched stimulation intensity, particularly relative electrical overstimulation. These findings imply that therapeutic electrical VTA stimulation might be relatively specific if employed with optimized parameters.


Subject(s)
Optogenetics/methods , Ventral Tegmental Area/physiology , Animals , Cerebrovascular Circulation , Electric Stimulation/methods , Evoked Potentials , Mice , Optogenetics/standards , Tomography, Emission-Computed, Single-Photon , Ventral Tegmental Area/diagnostic imaging
18.
Front Neural Circuits ; 13: 61, 2019.
Article in English | MEDLINE | ID: mdl-31611778

ABSTRACT

Multisensory integration in primary auditory (A1), visual (V1), and somatosensory cortex (S1) is substantially mediated by their direct interconnections and by thalamic inputs across the sensory modalities. We have previously shown in rodents (Mongolian gerbils) that during postnatal development, the anatomical and functional strengths of these crossmodal and also of sensory matched connections are determined by early auditory, somatosensory, and visual experience. Because supragranular layer III pyramidal neurons are major targets of corticocortical and thalamocortical connections, we investigated in this follow-up study how the loss of early sensory experience changes their dendritic morphology. Gerbils were sensory deprived early in development by either bilateral sciatic nerve transection at postnatal day (P) 5, ototoxic inner hair cell damage at P10, or eye enucleation at P10. Sholl and branch order analyses of Golgi-stained layer III pyramidal neurons at P28, which demarcates the end of the sensory critical period in this species, revealed that visual and somatosensory deprivation leads to a general increase of apical and basal dendritic branching in A1, V1, and S1. In contrast, dendritic branching, particularly of apical dendrites, decreased in all three areas following auditory deprivation. Generally, the number of spines, and consequently spine density, along the apical and basal dendrites decreased in both sensory deprived and non-deprived cortical areas. Therefore, we conclude that the loss of early sensory experience induces a refinement of corticocortical crossmodal and other cortical and thalamic connections by pruning of dendritic spines at the end of the critical period. Based on present and previous own results and on findings from the literature, we propose a scenario for multisensory development following early sensory loss.


Subject(s)
Auditory Cortex/physiology , Dendritic Spines/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Sensory Deprivation/physiology , Vision, Ocular/physiology , Visual Cortex/physiology , Animals , Auditory Cortex/cytology , Dendrites/physiology , Gerbillinae , Pyramidal Cells/cytology , Visual Cortex/cytology
19.
Eur J Neurosci ; 50(9): 3445-3453, 2019 11.
Article in English | MEDLINE | ID: mdl-31286598

ABSTRACT

The auditory system comprises some very large axonal terminals like the endbulb and calyx of Held and "giant" corticothalamic synapses. Previously, we described a hitherto unknown population of giant thalamocortical boutons arising from the medial division of the medial geniculate body (MGm) in the Mongolian gerbil, which terminate over a wide cortical range but in a columnar manner particularly in the extragranular layers of the auditory cortex. As a first step towards an understanding of their potential functional role, we here describe their ultrastructure combining anterograde tract-tracing with biocytin and electron microscopy. Quantitative ultrastructural analyses revealed that biocytin-labelled MGm boutons reach much larger sizes than other, non-labelled boutons. Also, mitochondria occupy more space within labelled boutons whereas synapses are of similar size. Labelled boutons are very heterogeneous in size but homogeneous with respect to their ultrastructural characteristics, with asymmetric synapses containing clear, round vesicles and targeting dendritic spines. Functionally, the ultrastructure of the MGm terminals indicates that they form excitatory contacts, which may transmit their information in a rapid, powerful and high-fidelity manner onto strategically advantageous compartments of their cortical target cells.


Subject(s)
Auditory Cortex/ultrastructure , Geniculate Bodies/ultrastructure , Neuroanatomical Tract-Tracing Techniques/methods , Presynaptic Terminals/ultrastructure , Thalamus/ultrastructure , Animals , Gerbillinae , Lysine/analogs & derivatives , Lysine/metabolism , Male , Microscopy, Electron , Neural Pathways/metabolism , Neuronal Tract-Tracers/metabolism
20.
J Neurosci ; 39(35): 6978-6991, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31285301

ABSTRACT

Time locking between neocortical sleep slow oscillations, thalamo-cortical spindles, and hippocampal sharp-wave ripples has convincingly been shown to be a key element of systems consolidation. Here we investigate the role of monosynaptic projections from ventral/intermediate hippocampus to medial prefrontal cortex (mPFC) in sleep-dependent memory consolidation in male mice. Following acquisition learning in the Barnes maze, we optogenetically silenced the axonal terminals of hippocampal projections within mPFC during slow-wave sleep. This silencing during SWS selectively impaired recent but not remote memory in the absence of effects on error rate and escape latencies. Furthermore, it prevented the development of the most efficient search strategy and sleep spindle time-locking to slow oscillation. An increase in post-learning sleep sharp-wave ripple (SPWR) density and reduced time locking of learning-associated SPWR activity to sleep spindles may be a less specific response. Our results demonstrate that monosynaptic projections from hippocampus to mPFC contribute to sleep-dependent memory consolidation, potentially by affecting the temporal coupling of sleep-associated electrophysiological events.SIGNIFICANCE STATEMENT Convincing evidence supports the role of slow-wave sleep (SWS), and the relevance of close temporal coupling of neuronal activity between brain regions for systems consolidation. Less attention has been paid so far to the specific neuronal pathways underlying these processes. Here, we optogenetically silenced the direct monosynaptic projection from ventral/intermediate hippocampus (HC) to medial prefrontal cortex (mPFC) during SWS in male mice following repeated learning trials in a weakly aversive spatial task. Our results confirm the concept that the monosynaptic projection between HC and mPFC contributes to memory consolidation and support an important functional role of this pathway in shaping the temporal precision among sleep-associated electrophysiological events.


Subject(s)
Hippocampus/physiology , Maze Learning/physiology , Memory Consolidation/physiology , Prefrontal Cortex/physiology , Spatial Memory/physiology , Animals , Electroencephalography , Male , Mice , Neural Pathways/physiology , Neurons/physiology , Optogenetics , Sleep/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...