Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1684: 463582, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36288622

ABSTRACT

Anti-androgens entering the aquatic environment, e.g., by effluents from wastewater treatment plants or agricultural settings are contributing to endocrine disruption in wildlife and humans. Due to the simultaneous presence of agonistic compounds, common in vitro bioassays can underestimate the risk posed by androgen antagonists. On the other hand, cytotoxic effects might lead to false positive assessments of anti-androgenic effects in conventional bioassays. In the present study, a combination of normal phase high-performance thin-layer chromatography (NP-HPTLC) with a yeast-based reporter gene assay is established for the detection of anti-androgenicity as a promising tool to reduce interferences of androgenic and anti-androgenic compounds present in the same sample. To avoid a misinterpretation of anti-androgenicity with cytotoxic effects, cell viability was assessed in parallel on the same plate using a resazurin viability assay adapted to HPTLC plates. The method was characterized by establishing dose-response curves for the model compounds flutamide and bisphenol A. Calculated effective doses at 10% (ED10) were 27.9 ± 1.3 ng zone-1 for flutamide and 20.1 ± 5.1 ng zone-1 for bisphenol A. Successful distinction between anti-androgenicity and cytotoxicity was exemplarily demonstrated with 4-nitroquinoline 1-oxide. As a proof of concept, the detection and quantification of anti-androgenicity in an extract of a landfill leachate is demonstrated. This study shows that the hyphenation of HPTLC with the yeast anti-androgen screen is a matrix-robust, cost-efficient and fast screening tool for the sensitive and simultaneous detection of anti-androgenic and cytotoxic effects in environmental samples. The method offers a wide range of possible applications in environmental monitoring and contributes to the identification of anti-androgenicity drivers in the course of an effect-directed analysis.


Subject(s)
Androgen Antagonists , Androgens , Humans , Androgens/toxicity , Androgen Antagonists/toxicity , Saccharomyces cerevisiae , Flutamide , Biological Assay/methods , Chromatography, Thin Layer/methods
2.
Environ Sci Pollut Res Int ; 25(5): 4037-4050, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28913580

ABSTRACT

The implementation of in vitro bioassays for the screening of dioxin-like compounds (DLCs) into management guidelines of dredged material is of increasing interest to regulators and risk assessors. This study reports on an intra- and inter-laboratory comparison study between four independent laboratories. A bioassay battery consisting of RTL-W1 (7-ethoxy-resorufin-O-deethylase; EROD), H4IIE (micro-EROD), and H4IIE-luc cells was used to assess aryl hydrocarbon receptor-mediated effects of sediments from two major European rivers, differently contaminated with DLCs. Each assay was validated by characterization of its limit of detection (LOD) and quantification (LOQ), z-factor, reproducibility, and repeatability. DLC concentrations were measured using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) and compared to bioassay-specific responses via toxicity equivalents (TEQs) on intra- and inter-laboratory levels. The micro-EROD assay exhibited the best overall performance among the bioassays. It was ranked excellent (z-factor = 0.54), reached a repeatability > 75%, was highly comparable (r 2 = 0.87) and reproducible (83%) between two laboratories, and was well correlated (r 2 = 0.803) with TEQs. Its LOD and LOQ of 0.5 and 0.7 pM 2,3,7,8-TCDD, respectively, approached LOQs of HRGC/HRMS measurements. In contrast, cell lines RTL-W1 and H4IIE-luc produced LODs > 0.7 pM 2,3,7,8-TCDD, LOQs > 1.7 pM 2,3,7,8-TCDD, and repeatability < 70%. Based on the data obtained, the micro-EROD assay is the most favorable bioanalytical tool, and via a micro-EROD-based limit value, it would allow for the assessment of sediment DLC concentrations; thus, it could be considered for the implementation into testing and management guidelines for dredged materials.


Subject(s)
Dioxins/toxicity , Environmental Monitoring/methods , Geologic Sediments/analysis , Water Pollutants, Chemical/toxicity , Animals , Biological Assay , Cell Line , Cytochrome P-450 CYP1A1/metabolism , Dioxins/analysis , Fish Proteins/metabolism , Germany , Oncorhynchus mykiss , Rats , Receptors, Aryl Hydrocarbon/metabolism , Reproducibility of Results , Rivers
3.
J Chromatogr A ; 1530: 185-191, 2017 Dec 29.
Article in English | MEDLINE | ID: mdl-29146425

ABSTRACT

The planar yeast estrogen screen (p-YES) can serve as a highly valuable and sensitive screening tool for the detection of estrogenic compounds in various sample matrices such as water and wastewater, personal care products and foodstuff. The method combines the separation of sample constituents by thin layer chromatography with the direct detection of estrogenic compounds on the surface of the HPTLC-plate. The previous protocol using the immersion of a normal phase silica HPTLC-plate in a cell suspension for bio-autography resulted in blurred signals due to the accelerated diffusion of compounds on the wet surface of the HPTLC-plate. Here, the application of the yeast cells by spraying on the surface of the HPTLC-plate is described as an alternative approach. The presented method for the hyphenation of normal phase thin layer chromatography with a yeast estrogen screen results in much sharper signals compared to reports in previous publications. Satisfying results were achieved using cultures with cell densities of 1000 FAU. Due to the reduced signal broadening, lower limits of quantification for estrogenic compounds were achieved (Estrone (E1)=2pg/zone, 17ß-estradiol (E2)=0.5pg/zone, 17α-ethinylestradiol (EE2)=0.5pg/zone and Estriol (E3)=20pg/zone). As demonstrated, it is possible to characterize profiles of estrogenic activity of wastewater samples with high quality and reproducibility. The improved sensitivity opens the stage for applications using native samples from waste- or even surface water directly applied on HPTLC-plates without the need for prior sample treatment by e.g. solid phase extraction.


Subject(s)
Chromatography, Thin Layer/methods , Estrogens/analysis , Saccharomyces cerevisiae/metabolism , Water Pollutants, Chemical/analysis , Water/chemistry , Estradiol/analysis , Estriol/analysis , Estrogens/isolation & purification , Estrone/analysis , Ethinyl Estradiol/analysis , Reproducibility of Results , Solid Phase Extraction , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...