Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Abdom Radiol (NY) ; 45(12): 4260-4270, 2020 12.
Article in English | MEDLINE | ID: mdl-32696213

ABSTRACT

PURPOSE: To subjectively and quantitatively compare the quality of 3 Tesla magnetic resonance imaging of the prostate acquired with a novel flexible surface coil (FSC) and with a conventional endorectal coil (ERC). METHODS: Six radiologists independently reviewed 200 pairs of axial, high-resolution T2-weighted and diffusion-weighted image data sets, each containing one examination acquired with the FSC and one with the ERC, respectively. Readers selected their preferred examination from each pair and assessed every single examination using six quality criteria on 4-point scales. Signal-to-noise ratios were measured and compared. RESULTS: Two readers preferred FSC acquisition (36.5-45%) over ERC acquisition (13.5-15%) for both sequences combined, and four readers preferred ERC acquisition (41-46%). Analysis of pooled responses for both sequences from all readers shows no significant preference for FSC or ERC. Analysis of the individual sequences revealed a pooled preference for the FSC in T2WI (38.7% vs 17.8%) and for the ERC in DWI (50.9% vs 19.6%). Patients' weight was the only weak predictor of a preference for the ERC acquisition (p = 0.04). SNR and CNR were significantly higher in the ERC acquisitions (p<0.001) except CNR differentiating tumor lesions from benign prostate (p=0.1). CONCLUSION: Although readers have strong individual preferences, comparable subjective image quality can be obtained for prostate MRI with an ERC and the novel FSC. ERC imaging might be particularly valuable for sequences with inherently lower SNR as DWI and larger patients whereas the FSC is generally preferred in T2WI. FSC imaging generates a lower SNR than with an ERC.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Humans , Magnetic Resonance Imaging , Male , Prostatic Neoplasms/diagnostic imaging , Signal-To-Noise Ratio
2.
Magn Reson Med ; 46(3): 619-23, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11550258

ABSTRACT

The SiMultaneous Acquisition of Spatial Harmonics (SMASH) technique uses linear combinations of undersampled datasets from the component coils of an RF coil array to reconstruct fully sampled composite datasets in reduced imaging times. In previously reported implementations, SMASH reconstructions were designed to reproduce the images that would otherwise be obtained by simple sums of fully gradient encoded component coil images. This strategy has left SMASH images vulnerable to phase cancellation artifacts when the sensitivities of RF coil array elements are not suitably phase-aligned. In fully gradient encoded imaging schemes these artifacts can be eliminated using a variety of methods for combining the individual coil images, including matched filter combinations as well as sum of squares combinations. Until now, these reconstruction schemes have been unavailable to SMASH reconstructions as SMASH produced a final composite image directly from the raw component coil k-space datasets. This article demonstrates a modification to SMASH that allows reconstruction of a full set of accelerated individual component coil images by fitting component coil sensitivity functions to a complete set of spatial harmonics tailored for each coil in the array. Standard component coil combinations applied to the individual reconstructed images produce final composite images free of phase cancellation artifacts.


Subject(s)
Image Enhancement/instrumentation , Image Processing, Computer-Assisted/instrumentation , Magnetic Resonance Imaging/instrumentation , Abdomen/anatomy & histology , Adult , Equipment Design , Humans , Phantoms, Imaging , Reference Values , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...