Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Radiology ; 311(2): e233136, 2024 May.
Article in English | MEDLINE | ID: mdl-38742971

ABSTRACT

Background MR elastography (MRE) has been shown to have excellent performance for noninvasive liver fibrosis staging. However, there is limited knowledge regarding the precision and test-retest repeatability of stiffness measurement with MRE in the multicenter setting. Purpose To determine the precision and test-retest repeatability of stiffness measurement with MRE across multiple centers using the same phantoms. Materials and Methods In this study, three cylindrical phantoms made of polyvinyl chloride gel mimicking different degrees of liver stiffness in humans (phantoms 1-3: soft, medium, and hard stiffness, respectively) were evaluated. Between January 2021 and January 2022, phantoms were circulated between five different centers and scanned with 10 MRE-equipped clinical 1.5-T and 3-T systems from three major vendors, using two-dimensional (2D) gradient-recalled echo (GRE) imaging and/or 2D spin-echo (SE) echo-planar imaging (EPI). Similar MRE acquisition parameters, hardware, and reconstruction algorithms were used at each center. Mean stiffness was measured by a single observer for each phantom and acquisition on a single section. Stiffness measurement precision and same-session test-retest repeatability were assessed using the coefficient of variation (CV) and the repeatability coefficient (RC), respectively. Results The mean precision represented by the CV was 5.8% (95% CI: 3.8, 7.7) for all phantoms and both sequences combined. For all phantoms, 2D GRE achieved a CV of 4.5% (95% CI: 3.3, 5.7) whereas 2D SE EPI achieved a CV of 7.8% (95% CI: 3.1, 12.6). The mean RC of stiffness measurement was 5.8% (95% CI: 3.7, 7.8) for all phantoms and both sequences combined, 4.9% (95% CI: 2.7, 7.0) for 2D GRE, and 7.0% (95% CI: 2.9, 11.2) for 2D SE EPI (all phantoms). Conclusion MRE had excellent in vitro precision and same-session test-retest repeatability in the multicenter setting when similar imaging protocols, hardware, and reconstruction algorithms were used. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Tang in this issue.


Subject(s)
Elasticity Imaging Techniques , Phantoms, Imaging , Elasticity Imaging Techniques/methods , Elasticity Imaging Techniques/instrumentation , Reproducibility of Results , Humans , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Liver Cirrhosis/diagnostic imaging
2.
Bioconjug Chem ; 35(4): 517-527, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38482815

ABSTRACT

Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent "click" cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide-alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.


Subject(s)
Azides , Peptidoglycan , Humans , Animals , Mice , Azides/chemistry , Tissue Distribution , Positron-Emission Tomography , Bacteria , Amino Acids , Alanine , Fluorine Radioisotopes/chemistry
4.
Magn Reson Med ; 91(5): 2114-2125, 2024 May.
Article in English | MEDLINE | ID: mdl-38270193

ABSTRACT

PURPOSE: To use the hepatocyte-specific gadolinium-based contrast agent gadoxetate combined with hyperpolarized (HP) [1-13 C]pyruvate MRI to selectively suppress metabolic signals from normal hepatocytes while preserving the signals arising from tumors. METHODS: Simulations were performed to determine the expected changes in HP 13 C MR signal in liver and tumor under the influence of gadoxetate. CC531 colon cancer cells were implanted into the livers of five Wag/Rij rats. Liver and tumor metabolism were imaged at 3 T using HP [1-13 C] pyruvate chemical shift imaging before and 15 min after injection of gadoxetate. Area under the curve for pyruvate and lactate were measured from voxels containing at least 75% of normal-appearing liver or tumor. RESULTS: Numerical simulations predicted a 36% decrease in lactate-to-pyruvate (L/P) ratio in liver and 16% decrease in tumor. In vivo, baseline L/P ratio was 0.44 ± 0.25 in tumors versus 0.21 ± 0.08 in liver (p = 0.09). Following administration of gadoxetate, mean L/P ratio decreased by an average of 0.11 ± 0.06 (p < 0.01) in normal-appearing liver. In tumors, mean L/P ratio post-gadoxetate did not show a statistically significant change from baseline. Compared to baseline levels, the relative decrease in L/P ratio was significantly greater in liver than in tumors (-0.52 ± 0.16 vs. -0.19 ± 0.25, p < 0.05). CONCLUSIONS: The intracellular hepatobiliary contrast agent showed a greater effect suppressing HP 13 C MRI metabolic signals (through T1 shortening) in normal-appearing liver when compared to tumors. The combined use of HP MRI with selective gadolinium contrast agents may allow more selective imaging in HP 13 C MRI.


Subject(s)
Contrast Media , Liver Neoplasms , Rats , Animals , Contrast Media/pharmacology , Gadolinium/pharmacology , Hepatocytes/metabolism , Gadolinium DTPA , Liver/metabolism , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/metabolism , Magnetic Resonance Imaging/methods , Pyruvates/metabolism , Lactates/metabolism
5.
Magn Reson Med ; 91(4): 1625-1636, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38115605

ABSTRACT

PURPOSE: Nonalcoholic fatty liver disease is an important cause of chronic liver disease. There are limited methods for monitoring metabolic changes during progression to steatohepatitis. Hyperpolarized 13 C MRSI (HP 13 C MRSI) was used to measure metabolic changes in a rodent model of fatty liver disease. METHODS: Fifteen Wistar rats were placed on a methionine- and choline-deficient (MCD) diet for 1-18 weeks. HP 13 C MRSI, T2 -weighted imaging, and fat-fraction measurements were obtained at 3 T. Serum aspartate aminotransaminase, alanine aminotransaminase, and triglycerides were measured. Animals were sacrificed for histology and measurement of tissue lactate dehydrogenase (LDH) activity. RESULTS: Animals lost significant weight (13.6% ± 2.34%), an expected characteristic of the MCD diet. Steatosis, inflammation, and mild fibrosis were observed. Liver fat fraction was 31.7% ± 4.5% after 4 weeks and 22.2% ± 4.3% after 9 weeks. Lactate-to-pyruvate and alanine-to-pyruvate ratios decreased significantly over the study course; were negatively correlated with aspartate aminotransaminase and alanine aminotransaminase (r = -[0.39-0.61]); and were positively correlated with triglycerides (r = 0.59-0.60). Despite observed decreases in hyperpolarized lactate signal, LDH activity increased by a factor of 3 in MCD diet-fed animals. Observed decreases in lactate and alanine hyperpolarized signals on the MCD diet stand in contrast to other studies of liver injury, where lactate and alanine increased. Observed hyperpolarized metabolite changes were not explained by alterations in LDH activity, suggesting that changes may reflect co-factor depletion known to occur as a result of oxidative stress in the MCD diet. CONCLUSION: HP 13 C MRSI can noninvasively measure metabolic changes in the MCD model of chronic liver disease.


Subject(s)
Choline Deficiency , Non-alcoholic Fatty Liver Disease , Rats , Animals , Mice , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Methionine/metabolism , Choline/metabolism , Pyruvic Acid/metabolism , Aspartic Acid/metabolism , Choline Deficiency/complications , Choline Deficiency/metabolism , Choline Deficiency/pathology , Rats, Wistar , Liver/metabolism , Racemethionine/metabolism , Diet , Triglycerides , Alanine/metabolism , Lactates/metabolism , Mice, Inbred C57BL , Disease Models, Animal
6.
J Magn Reson Imaging ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041836

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related death in the United States. However, early response assessment using the current approach of measuring changes in tumor size on computed tomography (CT) or MRI is challenging. PURPOSE: To investigate the feasibility of hyperpolarized (HP) [1-13 C]pyruvate MRI to quantify metabolism in the normal appearing pancreas and PDA, and to assess changes in PDA metabolism following systemic chemotherapy. STUDY TYPE: Prospective. SUBJECTS: Six patients (65.0 ± 7.6 years, 2 females) with locally advanced or metastatic PDA enrolled prior to starting a new line of systemic chemotherapy. FIELD STRENGTH/SEQUENCE: 3-T, T1-weighted gradient echo, metabolite-selective 13 C echoplanar imaging. ASSESSMENT: Time-resolved HP [1-13 C]pyruvate data were acquired before (N = 6) and 4-weeks after (N = 3) treatment initiation. Pyruvate metabolism, as quantified by pharmacokinetic modeling and metabolite area-under-the-curve ratios, was assessed in manually segmented PDA and normal appearing pancreas ROIs (N = 5). The change in tumor metabolism before and 4-weeks after treatment initiation was assessed in primary PDA (N = 2) and liver metastases (N = 1), and was compared to objective tumor response defined by response evaluation criteria in solid tumors (RECIST) on subsequent CTs. STATISTICAL TESTS: Descriptive tests (mean ± standard deviation), model fit error for pharmacokinetic rate constants. RESULTS: Primary PDA showed reduced alanine-to-lactate ratios when compared to normal pancreas, due to increased lactate-to-pyruvate or reduced alanine-to-pyruvate ratios. Of the three patients who received HP [1-13 C]pyruvate MRI before and 4-weeks after treatment initiation, one patient had a primary tumor with early metabolic response (increase in alanine-to-lactate) and subsequent partial response according to RECIST, one patient had a primary tumor with relatively stable metabolism and subsequent stable disease by RECIST, and one patient had metastatic PDA with increase in lactate-to-pyruvate of the liver metastases and corresponding progressive disease according to RECIST. DATA CONCLUSION: Altered pyruvate metabolism with increased lactate or reduced alanine was observed in the primary tumor. Early metabolic response assessed at 4-weeks after treatment initiation correlated with subsequent objective tumor response assessed using RECIST. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

7.
Radiology ; 309(3): e222776, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38112541

ABSTRACT

Background The Liver Imaging Reporting and Data System version 2018 (LI-RADS) treatment response algorithm (TRA) is a high-specificity, lower-sensitivity grading system to diagnose hepatocellular carcinoma (HCC) and recurrence after local-regional therapy. However, the emphasis on specificity can result in disease understaging, potentially leading to poorer posttransplant outcomes. Purpose To determine the negative predictive value (NPV) of pretransplant CT and MRI assessment for viable HCC on a per-patient basis using the LI-RADS TRA, considering explant pathology as the reference standard. Materials and Methods Patient records from 218 consecutive adult patients from a single institution with HCC who underwent liver transplant from January 2011 to November 2017 were retrospectively reviewed. Two readers blinded to the original report reviewed immediate (within 90 days) pretransplant imaging and characterized observations according to the LI-RADS TRA. Based on this, patients with LR-4, LR-5, or LR-TR (treatment response) viable tumors were designated as viable tumor; patients with solely LR-3 or LR-TR equivocal tumors were designated as equivocal; and patients with only LR-TR nonviable lesions were designated as no viable disease. Patients were designated as within or outside the Milan criteria. These per-patient designations were compared with the presence of viable disease at explant pathology. Fisher exact test was used to compare the differences between CT and MRI. Weighted κ values were used to calculate interreader reliability. Results Final study sample consisted of 206 patients (median age, 61 years [IQR, 57-65 years]; 157 male patients and 49 female patients). Per-patient LI-RADS TRA assessment of pretransplant imaging had an NPV of 32% (95% CI: 27, 38) and 26% (95% CI: 20, 33) (readers 1 and 2, respectively) for predicting viable disease. Seventy-five percent (reader 1) and 77% (reader 2) of patients deemed equivocal had residual tumors at explant pathology. Weighted interreader reliability was substantial (κ = 0.62). Conclusion Patient-based stratification of viable, equivocal, and nonviable disease at pretransplant CT or MRI, based on LI-RADS TRA, demonstrated low negative predictive value in excluding HCC at explant pathology. © RSNA, 2023 See also the editorial by Tamir and Tau in this issue.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Adult , Humans , Male , Female , Middle Aged , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Predictive Value of Tests , Retrospective Studies , Reproducibility of Results , Magnetic Resonance Imaging/methods , Algorithms , Tomography, X-Ray Computed/methods , Sensitivity and Specificity , Contrast Media
8.
ACS Sens ; 8(12): 4554-4565, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37992233

ABSTRACT

Imaging infections in patients is challenging using conventional methods, motivating the development of positron emission tomography (PET) radiotracers targeting bacteria-specific metabolic pathways. Numerous techniques have focused on the bacterial cell wall, although peptidoglycan-targeted PET tracers have been generally limited to the short-lived carbon-11 radioisotope (t1/2 = 20.4 min). In this article, we developed and tested new tools for infection imaging using an amino sugar component of peptidoglycan, namely, derivatives of N-acetyl muramic acid (NAM) labeled with the longer-lived fluorine-18 (t1/2 = 109.6 min) radioisotope. Muramic acid was reacted directly with 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP) to afford the enantiomeric NAM derivatives (S)-[18F]FMA and (R)-[18F]FMA. Both diastereomers were easily isolated and showed robust accumulation by human pathogens in vitro and in vivo, including Staphylococcus aureus. These results form the basis for future clinical studies using fluorine-18-labeled NAM-derived PET radiotracers.


Subject(s)
Muramic Acids , Peptidoglycan , Humans , Positron-Emission Tomography/methods , Fluorine Radioisotopes , Bacteria , Cell Wall
9.
J Infect Dis ; 228(Suppl 4): S281-S290, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788505

ABSTRACT

BACKGROUND: Vertebral discitis-osteomyelitis (VDO) is a devastating infection of the spine that is challenging to distinguish from noninfectious mimics using computed tomography and magnetic resonance imaging. We and others have developed novel metabolism-targeted positron emission tomography (PET) radiotracers for detecting living Staphylococcus aureus and other bacteria in vivo, but their head-to-head performance in a well-validated VDO animal model has not been reported. METHODS: We compared the performance of several PET radiotracers in a rat model of VDO. [11C]PABA and [18F]FDS were assessed for their ability to distinguish S aureus, the most common non-tuberculous pathogen VDO, from Escherichia coli. RESULTS: In the rat S aureus VDO model, [11C]PABA could detect as few as 103 bacteria and exhibited the highest signal-to-background ratio, with a 20-fold increased signal in VDO compared to uninfected tissues. In a proof-of-concept experiment, detection of bacterial infection and discrimination between S aureus and E coli was possible using a combination of [11C]PABA and [18F]FDS. CONCLUSIONS: Our work reveals that several bacteria-targeted PET radiotracers had sufficient signal to background in a rat model of S aureus VDO to be potentially clinically useful. [11C]PABA was the most promising tracer investigated and warrants further investigation in human VDO.


Subject(s)
Discitis , Osteomyelitis , Staphylococcal Infections , Humans , Rats , Animals , Discitis/diagnostic imaging , 4-Aminobenzoic Acid , Escherichia coli , Positron-Emission Tomography/methods , Staphylococcal Infections/diagnostic imaging , Osteomyelitis/microbiology , Bacteria , Staphylococcus aureus , Radiopharmaceuticals
10.
J Am Chem Soc ; 145(32): 17632-17642, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37535945

ABSTRACT

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[18F]-fluoro-d-glucose ([18F]FDG), the most common tracer used in clinical imaging, to form [18F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [18F]FDG was reacted with ß-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[18F]-fluoro-maltose ([18F]FDM) and 2-deoxy-2-[18F]-fluoro-sakebiose ([18F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[18F]fluoro-trehalose ([18F]FDT), 2-deoxy-2-[18F]fluoro-laminaribiose ([18F]FDL), and 2-deoxy-2-[18F]fluoro-cellobiose ([18F]FDC). We subsequently tested [18F]FDM and [18F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. Both [18F]FDM and [18F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [18F]FDM and [18F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [18F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.


Subject(s)
Fluorodeoxyglucose F18 , Trehalose , Humans , Cellobiose , Staphylococcus aureus , Positron-Emission Tomography/methods , Bacteria
12.
Radiology ; 307(5): e222855, 2023 06.
Article in English | MEDLINE | ID: mdl-37367445

ABSTRACT

Background Various limitations have impacted research evaluating reader agreement for Liver Imaging Reporting and Data System (LI-RADS). Purpose To assess reader agreement of LI-RADS in an international multicenter multireader setting using scrollable images. Materials and Methods This retrospective study used deidentified clinical multiphase CT and MRI and reports with at least one untreated observation from six institutions and three countries; only qualifying examinations were submitted. Examination dates were October 2017 to August 2018 at the coordinating center. One untreated observation per examination was randomly selected using observation identifiers, and its clinically assigned features were extracted from the report. The corresponding LI-RADS version 2018 category was computed as a rescored clinical read. Each examination was randomly assigned to two of 43 research readers who independently scored the observation. Agreement for an ordinal modified four-category LI-RADS scale (LR-1, definitely benign; LR-2, probably benign; LR-3, intermediate probability of malignancy; LR-4, probably hepatocellular carcinoma [HCC]; LR-5, definitely HCC; LR-M, probably malignant but not HCC specific; and LR-TIV, tumor in vein) was computed using intraclass correlation coefficients (ICCs). Agreement was also computed for dichotomized malignancy (LR-4, LR-5, LR-M, and LR-TIV), LR-5, and LR-M. Agreement was compared between research-versus-research reads and research-versus-clinical reads. Results The study population consisted of 484 patients (mean age, 62 years ± 10 [SD]; 156 women; 93 CT examinations, 391 MRI examinations). ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68 (95% CI: 0.61, 0.73), 0.63 (95% CI: 0.55, 0.70), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95% CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68 vs 0.62, respectively; P = .03) and for dichotomized malignancy (ICC, 0.63 vs 0.53, respectively; P = .005), but not for LR-5 (P = .14) or LR-M (P = .94). Conclusion There was moderate agreement for LI-RADS version 2018 overall. For some comparisons, research-versus-research reader agreement was higher than research-versus-clinical reader agreement, indicating differences between the clinical and research environments that warrant further study. © RSNA, 2023 Supplemental material is available for this article. See also the editorials by Johnson and Galgano and Smith in this issue.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Female , Middle Aged , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Reproducibility of Results , Retrospective Studies , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed , Contrast Media , Sensitivity and Specificity
13.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37293043

ABSTRACT

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach, that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[ 18 F]-fluoro-D-glucose ([ 18 F]FDG), the most common tracer used in clinical imaging, to form [ 18 F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [ 18 F]FDG was reacted with ß-D-glucose-1-phosphate in the presence of maltose phosphorylase, both the α-1,4 and α-1,3-linked products 2-deoxy-[ 18 F]-fluoro-maltose ([ 18 F]FDM) and 2-deoxy-2-[ 18 F]-fluoro-sakebiose ([ 18 F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[ 18 F]fluoro-trehalose ([ 18 F]FDT), 2-deoxy-2-[ 18 F]fluoro-laminaribiose ([ 18 F]FDL), and 2-deoxy-2-[ 18 F]fluoro-cellobiose ([ 18 F]FDC). We subsequently tested [ 18 F]FDM and [ 18 F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. The lead sakebiose-derived tracer [ 18 F]FSK was stable in human serum and showed high uptake in preclinical models of myositis and vertebral discitis-osteomyelitis. Both the synthetic ease, and high sensitivity of [ 18 F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of this tracer to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [ 18 F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.

14.
Radiographics ; 43(6): e220181, 2023 06.
Article in English | MEDLINE | ID: mdl-37227944

ABSTRACT

Quantitative imaging biomarkers of liver disease measured by using MRI and US are emerging as important clinical tools in the management of patients with chronic liver disease (CLD). Because of their high accuracy and noninvasive nature, in many cases, these techniques have replaced liver biopsy for the diagnosis, quantitative staging, and treatment monitoring of patients with CLD. The most commonly evaluated imaging biomarkers are surrogates for liver fibrosis, fat, and iron. MR elastography is now routinely performed to evaluate for liver fibrosis and typically combined with MRI-based liver fat and iron quantification to exclude or grade hepatic steatosis and iron overload, respectively. US elastography is also widely performed to evaluate for liver fibrosis and has the advantage of lower equipment cost and greater availability compared with those of MRI. Emerging US fat quantification methods can be performed along with US elastography. The author group, consisting of members of the Society of Abdominal Radiology (SAR) Liver Fibrosis Disease-Focused Panel (DFP), the SAR Hepatic Iron Overload DFP, and the European Society of Radiology, review the basics of liver fibrosis, fat, and iron quantification with MRI and liver fibrosis and fat quantification with US. The authors cover technical requirements, typical case display, quality control and proper measurement technique and case interpretation guidelines, pitfalls, and confounding factors. The authors aim to provide a practical guide for radiologists interpreting these examinations. © RSNA, 2023 See the invited commentary by Ronot in this issue. Quiz questions for this article are available in the supplemental material.


Subject(s)
Elasticity Imaging Techniques , Iron Overload , Liver Diseases , Humans , Iron , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathology , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging/methods , Liver Diseases/pathology , Iron Overload/diagnostic imaging , Elasticity Imaging Techniques/methods , Radiologists , Biomarkers
15.
J Hepatol ; 78(2): 238-246, 2023 02.
Article in English | MEDLINE | ID: mdl-36368598

ABSTRACT

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is prevalent in adults with obesity and can progress to cirrhosis. In a secondary analysis of prospectively acquired data from the multicenter, randomized, placebo-controlled FLINT trial, we investigated the relationship between reduction in adipose tissue compartment volumes and hepatic histologic improvement. METHODS: Adult participants in the FLINT trial with paired liver biopsies and abdominal MRI exams at baseline and end-of-treatment (72 weeks) were included (n = 76). Adipose tissue compartment volumes were obtained using MRI. RESULTS: Treatment and placebo groups did not differ in baseline adipose tissue volumes, or in change in adipose tissue volumes longitudinally (p = 0.107 to 0.745). Deep subcutaneous adipose tissue (dSAT) and visceral adipose tissue volume reductions were associated with histologic improvement in NASH (i.e., NAS [non-alcoholic fatty liver disease activity score] reductions of ≥2 points, at least 1 point from lobular inflammation and hepatocellular ballooning, and no worsening of fibrosis) (p = 0.031, and 0.030, respectively). In a stepwise logistic regression procedure, which included demographics, treatment group, baseline histology, baseline and changes in adipose tissue volumes, MRI hepatic proton density fat fraction (PDFF), and serum aminotransferases as potential predictors, reductions in dSAT and PDFF were associated with histologic improvement in NASH (regression coefficient = -2.001 and -0.083, p = 0.044 and 0.033, respectively). CONCLUSIONS: In adults with NASH in the FLINT trial, those with greater longitudinal reductions in dSAT and potentially visceral adipose tissue volumes showed greater hepatic histologic improvements, independent of reductions in hepatic PDFF. CLINICAL TRIAL NUMBER: NCT01265498. IMPACT AND IMPLICATIONS: Although central obesity has been identified as a risk factor for obesity-related disorders including insulin resistance and cardiovascular disease, the role of central obesity in non-alcoholic steatohepatitis (NASH) warrants further clarification. Our results highlight that a reduction in central obesity, specifically deep subcutaneous adipose tissue and visceral adipose tissue, may be related to histologic improvement in NASH. The findings from this analysis should increase awareness of the importance of lifestyle intervention in NASH for clinical researchers and clinicians. Future studies and clinical practice may design interventions that assess the reduction of deep subcutaneous adipose tissue and visceral adipose tissue as outcome measures, rather than simply weight reduction.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Humans , Non-alcoholic Fatty Liver Disease/pathology , Obesity, Abdominal , Liver/diagnostic imaging , Liver/pathology , Fibrosis , Obesity/complications , Obesity/pathology , Abdominal Fat/pathology , Magnetic Resonance Imaging/methods , Adipose Tissue/pathology
17.
18.
Magn Reson Med ; 88(6): 2609-2620, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35975978

ABSTRACT

PURPOSE: To develop techniques and establish a workflow using hyperpolarized carbon-13 (13 C) MRI and the pyruvate-to-lactate conversion rate (kPL ) biomarker to guide MR-transrectal ultrasound fusion prostate biopsies. METHODS: The integrated multiparametric MRI (mpMRI) exam consisted of a 1-min hyperpolarized 13 C-pyruvate EPI acquisition added to a conventional prostate mpMRI exam. Maps of kPL values were calculated, uploaded to a picture archiving and communication system and targeting platform, and displayed as color overlays on T2 -weighted anatomic images. Abdominal radiologists identified 13 C research biopsy targets based on the general recommendation of focal lesions with kPL >0.02(s-1 ), and created a targeting report for each study. Urologists conducted transrectal ultrasound-guided MR fusion biopsies, including the standard 1 H-mpMRI targets as well as 12-14 core systematic biopsies informed by the research 13 C-kPL targets. All biopsy results were included in the final pathology report and calculated toward clinical risk. RESULTS: This study demonstrated the safety and technical feasibility of integrating hyperpolarized 13 C metabolic targeting into routine 1 H-mpMRI and transrectal ultrasound fusion biopsy workflows, evaluated via 5 men (median age 71 years, prostate-specific antigen 8.4 ng/mL, Cancer of the Prostate Risk Assessment score 2) on active surveillance undergoing integrated scan and subsequent biopsies. No adverse event was reported. Median turnaround time was less than 3 days from scan to 13 C-kPL targeting, and scan-to-biopsy time was 2 weeks. Median number of 13 C targets was 1 (range: 1-2) per patient, measuring 1.0 cm (range: 0.6-1.9) in diameter, with a median kPL of 0.0319 s-1 (range: 0.0198-0.0410). CONCLUSIONS: This proof-of-concept work demonstrated the safety and feasibility of integrating hyperpolarized 13 C MR biomarkers to the standard mpMRI workflow to guide MR-transrectal ultrasound fusion biopsies.


Subject(s)
Prostate , Prostatic Neoplasms , Aged , Humans , Image-Guided Biopsy/methods , Lactates , Magnetic Resonance Imaging/methods , Male , Prospective Studies , Prostate/diagnostic imaging , Prostate/pathology , Prostate-Specific Antigen , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Pyruvic Acid , Ultrasonography, Interventional/methods
19.
Radiol Clin North Am ; 60(5): 857-871, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35989049

ABSTRACT

The liver's unique blood supply facilitates multiple important physiologic roles. Liver vascular disorders have distinct appearances on imaging examinations and may mimic other pathologies. This article reviews the imaging appearances of vascular disorders from a multimodality perspective. Liver vascular pathologies are categorized by how they affect liver inflow, liver outflow, and those with abnormal arterial-venous connections. By understanding the physiologic and pathologic underpinnings of the hepatic vasculature, the radiologist is well positioned to positively affect patient care.


Subject(s)
Liver Diseases , Vascular Diseases , Hepatic Artery/diagnostic imaging , Humans , Liver/diagnostic imaging , Liver Diseases/diagnostic imaging , Portal Vein , Vascular Diseases/diagnostic imaging
20.
Eur J Nucl Med Mol Imaging ; 49(11): 3761-3771, 2022 09.
Article in English | MEDLINE | ID: mdl-35732972

ABSTRACT

PURPOSE: Non-invasive imaging is a key clinical tool for detection and treatment monitoring of infections. Existing clinical imaging techniques are frequently unable to distinguish infection from tumors or sterile inflammation. This challenge is well-illustrated by prosthetic joint infections that often complicate joint replacements. D-methyl-11C-methionine (D-11C-Met) is a new bacteria-specific PET radiotracer, based on an amino acid D-enantiomer, that is rapidly incorporated into the bacterial cell wall. In this manuscript, we describe the biodistribution, radiation dosimetry, and initial human experience using D-11C-Met in patients with suspected prosthetic joint infections. METHODS: 614.5 ± 100.2 MBq of D-11C-Met was synthesized using an automated in-loop radiosynthesis method and administered to six healthy volunteers and five patients with suspected prosthetic joint infection, who were studied by PET/MRI. Time-activity curves were used to calculate residence times for each source organ. Absorbed doses to each organ and body effective doses were calculated using OLINDA/EXM 1.1 with both ICRP 60 and ICRP 103 tissue weighting factors. SUVmax and SUVpeak were calculated for volumes of interest (VOIs) in joints with suspected infection, the unaffected contralateral joint, blood pool, and soft tissue background. A two-tissue compartment model was used for kinetic modeling. RESULTS: D-11C-Met was well tolerated in all subjects. The tracer showed clearance from both urinary (rapid) and hepatobiliary (slow) pathways as well as low effective doses. Moreover, minimal background was observed in both organs with resident micro-flora and target organs, such as the spine and musculoskeletal system. Additionally, D-11C-Met showed increased focal uptake in areas of suspected infection, demonstrated by a significantly higher SUVmax and SUVpeak calculated from VOIs of joints with suspected infections compared to the contralateral joints, blood pool, and background (P < 0.01). Furthermore, higher distribution volume and binding potential were observed in suspected infections compared to the unaffected joints. CONCLUSION: D-11C-Met has a favorable radiation profile, minimal background uptake, and fast urinary extraction. Furthermore, D-11C-Met showed increased uptake in areas of suspected infection, making this a promising approach. Validation in larger clinical trials with a rigorous gold standard is still required.


Subject(s)
Methionine , Positron-Emission Tomography , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography/methods , Radiometry , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...