Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Rhythms ; 33(4): 363-375, 2018 08.
Article in English | MEDLINE | ID: mdl-29888643

ABSTRACT

Mammalian tissues display circadian rhythms in transcription, translation, and histone modifications. Here we asked how an advance of the light-dark cycle alters daily rhythms in the liver epigenome at the H3K4me3 (trimethylation of lysine 4 on histone 3) modification, which is found at active and poised gene promoters. H3K4me3 levels were first measured at 4 time points (zeitgeber time [ZT] 3, 8, 15, and 20) during a normal 12L:12D light-dark cycle. Peak levels were observed during the early dark phase at ZT15 and dropped to low levels around lights-on (ZT0) between ZT20 and ZT3. A 6-h phase advance at ZT18 (new lights-on after only 6 h of darkness) led to a transient extension of peak H3K4me3 levels. Although locomotor activity reentrained within a week after the phase advance, H3K4me3 rhythms failed to do so, with peak levels remaining in the light phase at the 1-week recovery time point. Eight weekly phase advances, with 1-week recovery times between each phase advance, further disrupted the H3K4me3 rhythms. Finally, we used the mPer2Luc knockin mouse to determine whether the phase advance also disrupted Per2 protein expression. Similar to the results from the histone work, we found both a rapid response to the phase advance and a delayed recovery, the latter in sync with H3K4me3 levels. A model to explain these results is offered.


Subject(s)
Circadian Clocks/genetics , Epigenesis, Genetic , Histones/genetics , Light , Liver/radiation effects , Animals , Circadian Rhythm , Darkness , Gene Knock-In Techniques , Histone Code/genetics , Liver/metabolism , Male , Methylation , Mice , Mice, Inbred C57BL , Period Circadian Proteins/genetics , Photoperiod
2.
PLoS One ; 12(7): e0180412, 2017.
Article in English | MEDLINE | ID: mdl-28683078

ABSTRACT

Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/µm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/µm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.


Subject(s)
Chromosomes/radiation effects , Epithelium/radiation effects , Iron Radioisotopes/adverse effects , Kidney/radiation effects , Photons/adverse effects , Translocation, Genetic/radiation effects , Animals , Carcinogenesis/radiation effects , Chromosomes/chemistry , Cosmic Radiation/adverse effects , Female , Genetic Loci/radiation effects , Heavy Ions , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Space Simulation , Tissue Culture Techniques
3.
Mutat Res ; 796: 13-19, 2017 02.
Article in English | MEDLINE | ID: mdl-28249151

ABSTRACT

BRCA1 plays an important role in preventing breast cancer and is often silenced or repressed in sporadic cancer. The BRCA1 promoter is bidirectional: it drives transcription of the long non-coding (lnc) NBR2 transcript in the opposite orientation relative to the BRCA1 transcript. Hypoxic conditions repress BRCA1 transcription, but their effect on expression of the NBR2 transcript has not been reported. We used quantitative RT-PCR to measure BRCA1 and NBR2 transcript levels in 0% and 1% oxygen in MCF-7 breast cancer cells and found that NBR2 transcript levels increased as a function of time under hypoxic conditions, whereas BRCA1 mRNA levels were repressed. Hypoxic conditions were ineffective in reducing BRCA1 mRNA in the UACC-3199 breast cancer cell line, which is reported to have an epigenetically silenced BRCA1 promoter, even though appreciable levels of BRCA1 and NBR2 mRNA were detected. Significant recovery back to baseline RNA levels occurred within 48h after the MCF-7 cells were restored to normoxic conditions. We used a construct with the 218bp minimal BRCA1 promoter linked to marker genes to show that this minimal promoter repressed expression bidirectionally under hypoxic conditions, which suggests that the elements necessary for induction of NBR2 are located elsewhere.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/genetics , Promoter Regions, Genetic/genetics , RNA, Long Noncoding/genetics , Transcription Factors/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/physiopathology , Cell Hypoxia , Female , Humans , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
4.
Mutat Res ; 788: 32-40, 2016 06.
Article in English | MEDLINE | ID: mdl-27055360

ABSTRACT

High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing (48)Ti ions (1GeV/amu, LET=107 keV/µm), (56)Fe ions (1GeV/amu, LET=151 keV/µm) ions, or sparsely ionizing protons (1GeV, LET=0.24 keV/µm). The lowest doses for (48)Ti and (56)Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3-5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the (48)Ti and (56)Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.


Subject(s)
Adenine Phosphoribosyltransferase , Cosmic Radiation/adverse effects , Mutation/radiation effects , Spleen/radiation effects , T-Lymphocytes/radiation effects , Adenine Phosphoribosyltransferase/genetics , Animals , Chromosome Deletion , Dose-Response Relationship, Radiation , Female , Linear Energy Transfer , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Mutation Rate , Radioisotopes , Spleen/pathology , T-Lymphocytes/pathology , Whole-Body Irradiation
5.
Radiat Res ; 184(4): 367-77, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26397174

ABSTRACT

Exposure to high-energy charged particles (HZE ions) at low fluence could significantly affect astronaut health after prolonged missions in deep space by inducing mutations and related cancers. We tested the hypothesis that the mutagenic effects of HZE ions could be detected at low fluence in a mouse model that detects autosomal mutations in vivo. Aprt heterozygous mice were exposed to 0.2, 0.4 and 1.4 Gy of densely ionizing (48)Ti ions (1 GeV/amu, LET = 107 keV/µm). We observed a dose-dependent increase in the Aprt mutant fraction in kidney epithelium at the two lowest doses (an average of 1 or 2 particles/cell nucleus) that plateaued at the highest dose (7 particles/cell nucleus). Mutant cells were expanded to determine mutation spectra and translocations affecting chromosome 8, which encodes Aprt. A PCR-based analysis for loss of heterozygosity (LOH) events on chromosome 8 demonstrated a significant shift in the mutational spectrum from Ti ion exposure, even at low fluence, by revealing "radiation signature" mutations in mutant cells from exposed mice. Likewise, a cytogenetic assay for nonreciprocal chromosome 8 translocations showed an effect of exposure. A genome-wide LOH assay for events affecting nonselected chromosomes also showed an effect of exposure even for the lowest dose tested. Considered in their entirety, these results show that accelerated (48)Ti ions induce large mutations affecting one or more chromosomes at low dose and fluence.


Subject(s)
Kidney/radiation effects , Mutation , Titanium , Adenine Phosphoribosyltransferase/genetics , Animals , Epithelium/radiation effects , Loss of Heterozygosity , Mice , Mice, Inbred C57BL , Radioisotopes , Translocation, Genetic
6.
Radiat Res ; 181(5): 452-63, 2014 May.
Article in English | MEDLINE | ID: mdl-24758577

ABSTRACT

High-energy protons found in the space environment can induce mutations and cancer, which are inextricably linked. We hypothesized that some mutants isolated from proton-exposed kidneys arose through a genome-wide incident that causes loss of heterozygosity (LOH)-generating mutations on multiple chromosomes (termed here genomic LOH). To test this hypothesis, we examined 11 pairs of nonselected chromosomes for LOH events in mutant cells isolated from the kidneys of mice exposed to 4 or 5 Gy of 1 GeV protons. The mutant kidney cells were selected for loss of expression of the chromosome 8-encoded Aprt gene. Genomic LOH events were also assessed in Aprt mutants isolated from isogenic cultured kidney epithelial cells exposed to 5 Gy of protons in vitro. Control groups were spontaneous Aprt mutants and clones isolated without selection from the proton-exposed kidneys or cultures. The in vivo results showed significant increases in genomic LOH events in the Aprt mutants from proton-exposed kidneys when compared with spontaneous Aprt mutants and when compared with nonmutant (i.e., nonselected) clones from the proton-exposed kidneys. A bias for LOH events affecting chromosome 14 was observed in the proton-induced Aprt mutants, though LOH for this chromosome did not confer increased radiation resistance. Genomic LOH events were observed in Aprt mutants isolated from proton-exposed cultured kidney cells; however the incidence was fivefold lower than in Aprt mutants isolated from exposed intact kidneys, suggesting a more permissive environment in the intact organ and/or the evolution of kidney clones prior to their isolation from the tissue. We conclude that proton exposure creates a subset of viable cells with LOH events on multiple chromosomes, that these cells form and persist in vivo, and that they can be isolated from an intact tissue by selection for a mutation on a single chromosome.


Subject(s)
Chromosome Aberrations , Chromosomes/radiation effects , Kidney/radiation effects , Loss of Heterozygosity , Radiation Injuries, Experimental/genetics , Adenine Phosphoribosyltransferase/deficiency , Adenine Phosphoribosyltransferase/genetics , Animals , Cell Survival , Cells, Cultured , Chromosome Painting , Chromosomes/genetics , Clone Cells , Dose-Response Relationship, Radiation , Heterozygote , Kidney/cytology , Metabolism, Inborn Errors/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mutagenesis , Protons/adverse effects , Radiation Injuries, Experimental/pathology , Radiation Tolerance , Recombination, Genetic/radiation effects , Urolithiasis/genetics , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...