Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Zootaxa ; 4747(1): zootaxa.4747.1.7, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32230123

ABSTRACT

A new classification is proposed for the subfamily Fluvicolinae in the New World Flycatchers (Tyrannidae), based on the results of a previously published phylogeny including more than 90% of the species. In this classification we propose one new family level name (Ochthoecini) and one new generic name (Scotomyias). We also resurrect three genera (Heteroxolmis, Pyrope and Nengetus) and subsume five (Tumbezia, Lathrotriccus, Polioxolmis, Neoxolmis and Myiotheretes) into other genera to align the classification with the current understanding of phylogenetic relationships in Fluvicolinae.


Subject(s)
Passeriformes , Songbirds , Animals , Phylogeny
2.
New Phytol ; 208(4): 1217-26, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26299211

ABSTRACT

We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi. In all cases, the independent origins occurred c. 24 million yr ago. Further, we show that the Paleocene, Eocene and Oligocene were key periods when diversification of major lineages within Parmeliaceae occurred, with subsequent radiations occurring primarily during the Oligocene and Miocene. Our phylogenetic hypothesis supports the independent origin of lichenicolous fungi associated with climatic shifts at the Oligocene-Miocene boundary. Moreover, diversification bursts at different times may be crucial factors driving the diversification of Parmeliaceae. Additionally, our study provides novel insight into evolutionary relationships in this large and diverse family of lichen-forming ascomycetes.


Subject(s)
Biological Evolution , Genes, Fungal , Lichens/genetics , Parmeliaceae/genetics , Phylogeny , Symbiosis , Classification
3.
Mol Phylogenet Evol ; 69(3): 852-60, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23831453

ABSTRACT

The avian family Paridae (tits and chickadees) contains c. 55 species distributed in the Palearctic, Nearctic, Afrotropics and Indomalaya. The group includes some of the most well-known and extensively studied avian species, and the evolutionary history, in particular the post-glacial colonization of the northern latitudes, has been comparably well-studied for several species. Yet a comprehensive phylogeny of the whole clade is lacking. Here, we present the first complete species phylogeny for the group based on sequence data from two nuclear introns and one mitochondrial gene for 67 taxa of parids. Our results strongly support the inclusion of the Fire-capped Tit (Cephalopyrus flammiceps), currently placed in the Remizidae, as the most basal member of the Paridae. The Yellow-browed Tit (Sylviparus modestus) and the Sultan Tit (Melanochlora sultanea) constitute the next two sequential branches whereas the remaining tits fall into two large clades, one of which contains the seed hoarding and nest excavating species. The indicated clades within these two groups are largely congruent with recent classifications, but with several unforeseen relationships, such as non-monophyly of the Sombre Tit (Poecile lugubris) and the Marsh Tit (Poecile palustris), as well as non-monophyly of both the African gray and the African black tits. Further, our results support a close relationship between the White-fronted Tit (Parus semilarvatus) and the varied Tit (Poecile varius) as well as a close relationship between the White-naped Tit (Parus nuchalis) and the Yellow-cheeked and Black-lored tits (Parus spilonotus and P. xanthogenys). Finally, Hume's Ground-tit (Pseudopodoces humilis) is found to be closely related to the Green-backed Tit (Parus monticolus) and the Great Tit (Parus major). We propose a new classification that is in accordance with this phylogeny.


Subject(s)
Biological Evolution , Passeriformes/classification , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , Genes, Mitochondrial , Introns/genetics , Likelihood Functions , Passeriformes/genetics , Sequence Analysis, DNA
4.
Mol Phylogenet Evol ; 69(3): 796-804, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23831559

ABSTRACT

The phylogenetic relationships within the manakin family (Pipridae) were investigated with sequence data from three nuclear introns and one mitochondrial protein-coding gene. This study confirms a sister group relationship between Neopelminae and Piprinae. We also find support for dividing the Piprinae into two principal clades: Ilicurini and Piprini. The genera Pipra and Chloropipo are found to be polyphyletic. Chloropipo species are placed in three different clades, including two species in an unresolved position alongside Ilicurini and Piprini. We propose a new classification of the family, where the most important modifications include recognizing the genus Ceratopipra for five species formerly placed in Pipra and the erection of a new genus for Chloropipo holochlora.


Subject(s)
Biological Evolution , Passeriformes/classification , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , Genes, Mitochondrial , Introns/genetics , Likelihood Functions , Passeriformes/genetics , Sequence Analysis, DNA
5.
Zootaxa ; 3613: 1-35, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-24698900

ABSTRACT

Here we present a phylogenetic hypothesis for the New World suboscine radiation, based on a dataset comprising of 219 terminal taxa and five nuclear molecular markers (ca. 6300 bp). We also estimate ages of the main clades in this radiation. This study corroborates many of the recent insights into the phylogenetic relationships of New World suboscines. It further clarifies a number of cases for which previous studies have been inconclusive, such as the relationships of Conopophagidae, Melanopareiidae and Tityridae. We find a remarkable difference in age of the initial divergence events in Furnariida and Tyrannida. The deepest branches in Furnariida are of Eocene age, whereas the extant lineages of Tyrannida have their origin in the Oligocene. Approximately half of the New World suboscine species are harboured in 5 large clades that started to diversify around the Mid Miocene Climatic Optimum (16-12 Mya). Based on our phylogenetic results we propose a revised classification of the New World suboscines. We also erect new family or subfamily level taxa for four small and isolated clades: Berlepschiinae, Pipritidae, Tachurididae and Muscigrallinae.


Subject(s)
Avian Proteins/genetics , Passeriformes/classification , Passeriformes/genetics , Animals , DNA-Binding Proteins/genetics , Evolution, Molecular , Homeodomain Proteins/genetics , Introns , Latin America , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
7.
Mol Phylogenet Evol ; 42(1): 25-37, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16876441

ABSTRACT

The phylogenetic relationships of members of Cotingidae were investigated using >2100 bp of sequence data from two nuclear introns (myoglobin intron 2 and G3PDH intron 11) and one protein-coding mitochondrial gene (cytochrome b). Strong support was found for a monophyletic clade including 23 traditional cotingid genera, corresponding to the Cotingidae sensu [Remsen, J.V. Jr., Jaramillo, A., Nores, M., Pacheco, J.F., Robbins, M.B., Schulenberg, T.S., Stiles, F.G., da Silva, J.M.C., Stotz, D.F., Zimmer, K.J., 2005. Version 2005-11-15. A classification of the bird species of South America. American Ornithologists' Union. ]. Neither Oxyruncus nor any of the genera in Tityrinae sensu [Prum, R.O, Lanyon, W.E., 1989. Monophyly and phylogeny of the Schiffornis group (Tyrannoidea). Condor 91, 444-461.] are members of Cotingidae. Within Cotingidae a polytomy of four well-supported clades was recovered: (1) the fruiteaters Pipreola and Ampelioides; (2) the Ampelion group, including Phytotoma; (3) Rupicola and Phoenicircus; and (4) the 'core cotingas' consisting of the remainder of the Cotingas (e.g. fruitcrows, Cotinga, Procnias, Lipaugus, and Carpodectes), with Snowornis in a basal position. The separation of Snowornis from Lipaugus [Prum, R.O, Lanyon, W.E., 1989. Monophyly and phylogeny of the Schiffornis group (Tyrannoidea). Condor 91, 444-461.] was strongly supported, as were the close relationships between Gymnoderus and Conioptilon, and between Tijuca and Lipaugus. However, basal relationships among 'core cotinga' clades were not resolved.


Subject(s)
Birds/genetics , Evolution, Molecular , Phylogeny , Animals , Birds/classification , Cell Nucleus/genetics , Cytochromes b/genetics , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Molecular Sequence Data , Mutagenesis, Insertional , Myoglobin/genetics , Sequence Analysis, DNA , Sequence Deletion
8.
Biol Lett ; 2(4): 543-7, 2006 Dec 22.
Article in English | MEDLINE | ID: mdl-17148284

ABSTRACT

Patterns of diversification and timing of evolution within Neoaves, which includes almost 95% of all bird species, are virtually unknown. On the other hand, molecular data consistently indicate a Cretaceous origin of many neoavian lineages and the fossil record seems to support an Early Tertiary diversification. Here, we present the first well-resolved molecular phylogeny for Neoaves, together with divergence time estimates calibrated with a large number of stratigraphically and phylogenetically well-documented fossils. Our study defines several well-supported clades within Neoaves. The calibration results suggest that Neoaves, after an initial split from Galloanseres in Mid-Cretaceous, diversified around or soon after the K/T boundary. Our results thus do not contradict palaeontological data and show that there is no solid molecular evidence for an extensive pre-Tertiary radiation of Neoaves.


Subject(s)
Birds/classification , Fossils , Phylogeny , Animals , Bayes Theorem , Birds/anatomy & histology , Birds/genetics , Classification/methods , Molecular Sequence Data , Time Factors
9.
Mol Phylogenet Evol ; 40(2): 471-83, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16678446

ABSTRACT

Despite increased understanding of higher-level relationships in passerine birds in the last 15 years, the taxonomic boundaries and phylogenetic interrelationships of the major groups of the Tyrannida (including the cotingas, manakins, tityrines, and tyrant flycatchers) remain unclear. Here, we present an analysis of DNA sequence data obtained from two nuclear exons, three introns, and one mitochondrial gene for 26 genera of Tyrannida and 6 tracheophone outgroups. The analysis resulted in well-supported hypotheses about the earliest evolution within Tyrannida. The Cotingidae, Pipridae, Tityrinae (sensu) [Prum, R.O., Rice, N.H., Mobley, J.A., Dimmick, W.W., 2000. A preliminary phylogenetic hypothesis for the cotingas (Cotingidae) based on mitochondrial DNA. Auk 117, 236-241], Tyrannidae, and the tyrannid subfamiles Tyranninae and Pipromorphinae (sensu) [Sibley, C.G., Monroe, B. L. Jr., 1990. Distribution and Taxonomy of Birds of the World. Yale University Press, New Haven, CT] were all found to be reciprocally monophyletic (given the present taxon sampling). The Cotingidae and Pipridae form a clade that is the sister group to a well-supported clade including Oxyruncus, the Tityrinae, Piprites, and the Tyrannidae. Oxyruncus is the sister group to the Tityrinae, and Piprites is placed as the sister group to the Tyrannidae. The tyrannid subfamilies Tyranninae and Pipromorphinae are monophyletic sister taxa, but the relationships of Platyrinchus mystaceus to these two clades remains ambiguous. The presence of medial (=internal) cartilages in the syrinx is a synapomorphy for the Oxyruncus-Tityrinae-Piprites-Tyrannidae clade. Although morphological synapomorphies currently support the monophyly of both the Pipridae and the Cotingidae, convergences and/or reversals in morphological character states are common in Tyrannida. The relationship between Oxyruncus and the Tityrinae is congruent with additional syringeal synapomorphies and allozyme distance data. Accordingly, we propose the recognition the family Tityridae within the Tyrannida to include the genera Schiffornis, Laniisoma, Laniocera, Iodopleura, Xenopsaris, Pachyramphus, Tityra, and Oxyruncus.


Subject(s)
Biological Evolution , Birds/genetics , Animals , Base Sequence , Biomarkers , Birds/anatomy & histology , Birds/classification , Genetic Variation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...