Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 36(30): 4370-4378, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28368426

ABSTRACT

Recent studies suggest that the presence of a KRAS mutation may be insufficient for defining a clinically homogenous molecular group, as many KRAS mutant tumors lose reliance on K-Ras for survival. Identifying pathways that support K-Ras dependency may define clinically relevant KRAS subgroups and lead to the identification of new drug targets. We have analyzed a panel of 17 KRAS mutant lung cancer cell lines classified as K-Ras-dependent or -independent for co-dependency on protein kinase C δ (PKCδ). We show that functional dependency on K-Ras and PKCδ co-segregate, and that dependency correlates with a more epithelial-like phenotype. Furthermore, we show that the pro-apoptotic and pro-tumorigenic functions of PKCδ also segregate based on K-Ras dependency, as K-Ras-independent cells are more sensitive to topoisomerase inhibitors, and depletion of PKCδ in this subgroup suppresses apoptosis through increased activation of extracellular signal-regulated kinase (ERK). In contrast, K-Ras-dependent lung cancer cells are largely insensitive to topoisomerase inhibitors, and depletion of PKCδ can increase apoptosis and decrease activation of ERK in this subgroup. We have previously shown that nuclear translocation of PKCδ is necessary and sufficient for pro-apoptotic signaling. Our current studies show that K-Ras-dependent cells are refractive to PKCδ-driven apoptosis. Analysis of this subgroup showed increased PKCδ expression and an increase in the nuclear:cytoplasmic ratio of PKCδ. In addition, targeting PKCδ to the nucleus induces apoptosis in K-Ras-independent, but not K-Ras-dependent non-small-cell lung cancer (NSCLC) cells. Our studies provide tools for identification of the subset of patients with KRAS mutant tumors most amenable to targeting of the K-Ras pathway, and identify PKCδ as a potential target in this tumor population. These subgroups are likely to be of clinical relevance, as high PKCδ expression correlates with increased overall survival and a more epithelial tumor phenotype in patients with KRAS mutant lung adenocarcinomas.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Kinase C-delta/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , DNA Fragmentation , Drug Resistance, Neoplasm , Gene Knockdown Techniques , Humans , Immunoblotting , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Real-Time Polymerase Chain Reaction
2.
Oncogene ; 33(10): 1306-15, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-23474764

ABSTRACT

Protein kinase C δ (PKCδ) regulates apoptosis in the mammary gland, however, the functional contribution of PKCδ to the development or progression of breast cancer has yet to be determined. Meta-analysis of ErbB2-positive breast cancers shows increased PKCδ expression, and a negative correlation between PKCδ expression and prognosis. Here, we present in-vivo evidence that PKCδ is essential for the development of mammary gland tumors in a ErbB2-overexpressing transgenic mouse model, and in-vitro evidence that PKCδ is required for proliferative signaling downstream of the ErbB2 receptor. Mouse mammary tumor virus (MMTV)-ErbB2 mice lacking PKCδ (δKO) have increased tumor latency compared with MMTV-ErbB2 wild-type (δWT) mice, and the tumors show a dramatic decrease in Ki-67 staining. To explore the relationship between PKCδ and ErbB2-driven proliferation more directly, we used MCF-10A cells engineered to express a synthetic ligand-inducible form of the ErbB2 receptor. Depletion of PKCδ with short hairpin RNA inhibited ligand-induced growth in both two-dimensional (2D) (plastic) and three-dimensional (3D) (Matrigel) culture, and correlated with decreased phosphorylation of the ErbB2 receptor and reduced activation of Src and MAPK/ERK pathways. Similarly, in human breast cancer cell lines in which ErbB2 is overexpressed, depletion of PKCδ suppresses proliferation, Src and ERK activation. PKCδ appears to drive proliferation through the formation of an active ErbB2/PKCδ/Src signaling complex, as depletion of PKCδ disrupts association of Src with the ErbB2 receptor. Taken together, our studies present the first evidence that PKCδ is a critical regulator of ErbB2-mediated tumorigenesis, and suggest further investigation of PKCδ as a target in ErbB2-positive breast cancer.


Subject(s)
Breast Neoplasms/enzymology , Carcinogenesis/metabolism , Mammary Neoplasms, Experimental/enzymology , Protein Kinase C-delta/physiology , Receptor, ErbB-2/physiology , Animals , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Knockout , Prognosis , Signal Transduction
3.
Oncogene ; 27(21): 3045-53, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18059334

ABSTRACT

PKCdelta is essential for apoptosis, but regulation of the proapoptotic function of this ubiquitous kinase is not well understood. Nuclear translocation of PKCdelta is necessary and sufficient to induce apoptosis and is mediated via a C-terminal bipartite nuclear localization sequence. However, PKCdelta is found predominantly in the cytoplasm of nonapoptotic cells, and the apoptotic signal that activates its nuclear translocation is not known. We show that in salivary epithelial cells, phosphorylation at specific tyrosine residues in the N-terminal regulatory domain directs PKCdelta to the nucleus where it induces apoptosis. Analysis of each tyrosine residue in PKCdelta by site-directed mutagenesis identified two residues, Y64 and Y155, as essential for nuclear translocation. Suppression of apoptosis correlated with suppressed nuclear localization of the Y --> F mutant proteins. Moreover, a phosphomimetic PKCdelta Y64D/Y155D mutant accumulated in the nucleus in the absence of an apoptotic signal. Forced nuclear accumulation of PKCdelta-Y64F and Y155F mutant proteins, by attachment of an SV40 nuclear localization sequence, fully reconstituted their ability to induce apoptosis, indicating that tyrosine phosphorylation per se is not required for apoptosis, but for targeting PKCdelta to the nucleus. We propose that phosphorylation/dephosphorylation of PKCdelta in the regulatory domain functions as a switch to promote cell survival or cell death.


Subject(s)
Cell Nucleus/metabolism , Protein Kinase C-delta/metabolism , Tyrosine/metabolism , Animals , Base Sequence , Cell Line , Cell Nucleus/enzymology , DNA Primers , In Situ Nick-End Labeling , Mice , Mutagenesis, Site-Directed , Phosphorylation , Protein Kinase C-delta/chemistry , Protein Kinase C-delta/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...