Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 568, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840068

ABSTRACT

BACKGROUND: Transgenic (Tg) mice are widely used in biomedical research, and they are typically generated by injecting transgenic DNA cassettes into pronuclei of one-cell stage zygotes. Such animals often show unreliable expression of the transgenic DNA, one of the major reasons for which is random insertion of the transgenes. We previously developed a method called "pronuclear injection-based targeted transgenesis" (PITT), in which DNA constructs are directed to insert at pre-designated genomic loci. PITT was achieved by pre-installing so called landing pad sequences (such as heterotypic LoxP sites or attP sites) to create seed mice and then injecting Cre recombinase or PhiC31 integrase mRNAs along with a compatible donor plasmid into zygotes derived from the seed mice. PITT and its subsequent version, improved PITT (i-PITT), overcome disadvantages of conventional Tg mice such as lack of consistent and reliable expression of the cassettes among different Tg mouse lines, and the PITT approach is superior in terms of cost and labor. One of the limitations of PITT, particularly using Cre-mRNA, is that the approach cannot be used for insertion of conditional expression cassettes using Cre-LoxP site-specific recombination. This is because the LoxP sites in the donor plasmids intended for achieving conditional expression of the transgene will interfere with the PITT recombination reaction with LoxP sites in the landing pad. RESULTS: To enable the i-PITT method to insert a conditional expression cassette, we modified the approach by simultaneously using PhiC31o and FLPo mRNAs. We demonstrate the strategy by creating a model containing a conditional expression cassette at the Rosa26 locus with an efficiency of 13.7%. We also demonstrate that inclusion of FLPo mRNA excludes the insertion of vector backbones in the founder mice. CONCLUSIONS: Simultaneous use of PhiC31 and FLP in i-PITT approach allows insertion of donor plasmids containing Cre-loxP-based conditional expression cassettes.


Subject(s)
Genome , Integrases , Mice, Transgenic , Animals , Mice , Integrases/genetics , Integrases/metabolism , Transgenes , Gene Targeting/methods , Gene Transfer Techniques , Plasmids/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mutagenesis, Insertional
2.
FEBS Open Bio ; 13(9): 1615-1624, 2023 09.
Article in English | MEDLINE | ID: mdl-36999634

ABSTRACT

Genetic disruption of glycosyltransferases has provided clear information on the roles of their reaction products in the body. Our group has studied the function of glycosphingolipids by genetic engineering of glycosyltransferases in cell culture and in mice, which has demonstrated both expected and unexpected results. Among these findings, aspermatogenesis in ganglioside GM2/GD2 synthase knockout mice was one of the most surprising and intriguing results. There were no sperms in testis, and multinuclear giant cells were detected instead of spermatids. Although serum levels of testosterone in the male mice were extremely low, testosterone accumulated in the interstitial tissues, including Leydig cells, and seemed not to be transferred into the seminiferous tubules or vascular cavity from Leydig cells. This was considered to be the cause of aspermatogenesis and low serum levels of testosterone. Patients with a mutant GM2/GD2 synthase gene (SPG26) showed similar clinical signs, not only in terms of the neurological aspects, but also in the male reproductive system. The mechanisms for testosterone transport by gangliosides are discussed here based on our own results and reports from other laboratories.


Subject(s)
Gangliosides , N-Acetylgalactosaminyltransferases , Animals , Male , Mice , G(M2) Ganglioside , Gangliosides/genetics , Mice, Knockout , N-Acetylgalactosaminyltransferases/genetics , Testosterone
3.
Sci Rep ; 13(1): 4987, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973292

ABSTRACT

Exosomes (small extracellular vesicles: EVs) have attracted increasing attention from basic scientists and clinicians since they play important roles in cell-to-cell communication in various biological processes. Various features of EVs have been elucidated regarding their contents, generation and secretion mechanisms, and functions in inflammation, regeneration, and cancers. These vesicles are reported to contain proteins, RNAs, microRNAs, DNAs, and lipids. Although the roles of individual components have been rigorously studied, the presence and roles of glycans in EVs have rarely been reported. In particular, glycosphingolipids in EVs have not been investigated to date. In this study, the expression and function of a representative cancer-associated ganglioside, GD2, in malignant melanomas was investigated. Generally, cancer-associated gangliosides have been shown to enhance malignant properties and signals in cancers. Notably, EVs derived from GD2-expressing melanomas enhanced the malignant phenotypes of GD2-negative melanomas, such as cell growth, invasion, and cell adhesion, in a dose-dependent manner. The EVs also induced increased phosphorylation of signaling molecules such as EGF receptor and focal adhesion kinase. These results suggest that EVs released from cancer-associated ganglioside-expressing cells exert many functions that have been reported as a function of these gangliosides and regulate microenvironments, including total aggravation of heterogeneous cancer tissues, leading to more malignant and advanced cancer types.


Subject(s)
Extracellular Vesicles , Gangliosides , Melanoma , Tumor Microenvironment , Humans , Extracellular Vesicles/metabolism , Gangliosides/analysis , Gangliosides/metabolism , Melanoma/metabolism , Melanoma/pathology , Cell Line, Tumor
4.
Glycoconj J ; 40(3): 323-332, 2023 06.
Article in English | MEDLINE | ID: mdl-36897478

ABSTRACT

Gangliosides are expressed in nervous systems and some neuroectoderm-derived tumors at high levels and play pivotal roles. However, mechanisms for the regulation of glycosyltransferase genes responsible for the ganglioside synthesis are not well understood. In this study, we analyzed DNA methylation patterns of promoter regions of GD3 synthase (ST8SIA1) as well as mRNA levels and ganglioside expression using human glioma cell lines. Among 5 cell lines examined, 4 lines showed changes in the expression levels of related genes after treatment with 5-aza-dC. LN319 showed up-regulation of St8sia1 and increased b-series gangliosides after 5-aza-dC treatment, and an astrocytoma cell line, AS showed high expression of ST8SIA1 and b-series gangliosides persistently before and after 5-Aza-2'-deoxycytidine treatment. Using these 2 cell lines, DNA methylation patterns of the promoter regions of the gene were analyzed by bisulfite-sequencing. Consequently, 2 regions that were methylated before 5-Aza-2'-deoxycytidine treatment were demethylated in LN319 after the treatment, while those regions were persistently demethylated in AS. These 2 regions corresponded with sites defined as promoter regions by Luciferase assay. Taken together, it was suggested that ST8SIA1 gene is regulated by DNA methylation at the promoter regions, leading to the regulation of tumor phenotypes.


Subject(s)
DNA Methylation , Glioma , Humans , Azacitidine/pharmacology , Azacitidine/metabolism , Cell Line, Tumor , Decitabine/pharmacology , Decitabine/metabolism , DNA Methylation/genetics , Gangliosides/genetics , Gangliosides/metabolism , Gene Expression , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Promoter Regions, Genetic/genetics
5.
PLoS One ; 18(2): e0281414, 2023.
Article in English | MEDLINE | ID: mdl-36827398

ABSTRACT

Gangliosides, sialic acid-containing glycosphingolipids, are widely involved in regulations of signal transductions to control cellular functions. It has been suggested that GM3, the simplest structure among gangliosides, is involved in insulin resistance, whereas it remains unclear whether insulin signaling diminished by GM3 actually aggravates the pathological conditions in metabolic disorders. Moreover, the functional roles of gangliosides in the regulation of insulin signaling have not yet been fully elucidated in liver or hepatocytes despite that it is one of the major insulin-sensitive organs. To understand physiological roles of GM3 in metabolic homeostasis in liver, we conducted a high fat diet (HFD) loading experiment using double knockout (DKO) mice of GM2/GD2 synthase and GD3 synthase, which lack all gangliosides except GM3, as well as wild-type (WT) mice. DKO mice were strikingly resistant to HFD-induced hepatosteatosis, and hepatic lipogenesis-related molecules including insulin signaling components were down-regulated in HFD-fed DKO. Furthermore, we established primary hepatocyte cultures from DKO and WT mice, and examined their responses to insulin in vitro. Following insulin stimulation, DKO hepatocytes expressing GM3 showed attenuated expression and/or activations in the downstream components compared with WT hepatocytes expressing GM2. While insulin stimulation induced lipogenic proteins in hepatocytes from both genotypes, their expression levels were lower in DKO than in WT hepatocytes after insulin treatment. All our findings suggest that the modified gangliosides, i.e., a shift to GM3 from GM2, might exert a suppressive effect on lipogenesis by attenuating insulin signaling at least in mouse hepatocytes, which might result in protection of HFD-induced hepatosteatosis.


Subject(s)
G(M3) Ganglioside , Insulin Resistance , Mice , Animals , Insulin/metabolism , Diet, High-Fat , Signal Transduction , Gangliosides/metabolism , Insulin, Regular, Human , G(M2) Ganglioside
6.
Am J Med Genet A ; 188(9): 2590-2598, 2022 09.
Article in English | MEDLINE | ID: mdl-35775650

ABSTRACT

Childhood-onset forms of hereditary spastic paraplegia are ultra-rare diseases and often present with complex features. Next-generation-sequencing allows for an accurate diagnosis in many cases but the interpretation of novel variants remains challenging, particularly for missense mutations. Where sufficient knowledge of the protein function and/or downstream pathways exists, functional studies in patient-derived cells can aid the interpretation of molecular findings. We here illustrate the case of a 13-year-old female who presented with global developmental delay and later mild intellectual disability, progressive spastic diplegia, spastic-ataxic gait, dysarthria, urinary urgency, and loss of deep tendon reflexes of the lower extremities. Exome sequencing showed a novel splice-site variant in trans with a novel missense variant in B4GALNT1 [NM_001478.5: c.532-1G>C/c.1556G>C (p.Arg519Pro)]. Functional studies in patient-derived fibroblasts and cell models of GM2 synthase deficiency confirmed a loss of B4GALNT1 function with no synthesis of GM2 and other downstream gangliosides. Collectively these results established the diagnosis of B4GALNT1-associated HSP (SPG26). Our approach illustrates the importance of careful phenotyping and functional characterization of novel gene variants, particularly in the setting of ultra-rare diseases, and expands the clinical and molecular spectrum of SPG26, a disorder of complex ganglioside biosynthesis.


Subject(s)
Spastic Paraplegia, Hereditary , Adolescent , Child , Female , Gangliosides/genetics , Humans , Mutation , Pedigree , Rare Diseases , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics
7.
Glycoconj J ; 39(2): 145-155, 2022 04.
Article in English | MEDLINE | ID: mdl-35315508

ABSTRACT

Immunotherapy of malignant cancers is now becoming one of representative approaches to overcome cancers. To construct strategies for immunotherapy, presence of tumor-specific antigens should be a major promise. A number of cancer specific- or cancer-associated antigens have been reported based on various experimental sets and various animal systems. The most reasonable strategy to define tumor-specific antigens might be "autologous typing" performed by Old's group, proposing three classes of tumor-antigens recognized by host immune systems of cancer patients. Namely, class 1, individual antigens that is present only in the patient's sample analyzed; class 2, shared antigens that can be found only in some group of cancers in some patients, but not in normal cells and tissues; class 3, universal antigens that are present in some cancers but also in normal cells and tissues with different densities. Sen Hakomori reported there were novel carbohydrates in cancers that could not be detected in normal cells mainly by biochemical approaches. Consequently, many of class 2 cancer-specific antigens have been revealed to be carbohydrate antigens, and been used for cancer diagnosis and treatment. Not only as cancer markers, but roles of those cancer-associated carbohydrates have also been recognized as functional molecules in cancer cells. In particular, roles of complex carbohydrates in the regulation of cell signaling on the cell surface microdomains, glycolipid-enriched microdomain (GEM)/rafts have been reported by Hakomori and many other researchers including us. The processes and present status of these studies on cancer-associated glycolipids were summarized.


Subject(s)
Glycolipids , Neoplasms , Animals , Antigens, Tumor-Associated, Carbohydrate , Biomarkers, Tumor , Humans , Signal Transduction
8.
Nagoya J Med Sci ; 83(3): 535-549, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34552288

ABSTRACT

Ganglioside GD3/GD2 are over-expressed in various neuroectoderm-derived tumors. Previous studies indicated that GD3 is involved in the enhancement of cancer properties such as rapid growth and increased invasiveness. However, little is known about the functions of GD3/GD2 in glioma cells and glioma microenvironments. To clarify the functions of GD3/GD2 in gliomas, we used a mouse glioma model based on the RCAS/Gtv-a system. At first, we compared the gliomas size between wild-type (WT) and GD3 synthase (GD3S) knockout (KO) mice, showing a less malignant histology and slower tumor growth in GD3S-KO mice than in WT mice. Immunohistochemistry of glioma sections from WT and GD3S-KO mice revealed that reactive microglia/macrophages showed different localization patterns between the two genetic types of mice. CD68+ cells were more frequently stained inside glioma tissues of GD3S-KO mice, while they were stained mainly around glioma tissues in WT mice. The number of CD68+ cells markedly increased in tumor tissues of GD3S-KO mice at 2 weeks after injection of transfectant DF-1 cells. Furthermore, CD68+ cells in GD3S(-/-) glioma tissues expressed higher levels of inducible nitric oxide synthase. We observed higher expression levels of pro-inflammatory cytokine genes in primary-cultured glioma cells of WT mice than in GD3S-KO mice. DNA microarray data also revealed differential expression levels of various cytokines and chemokines in glioma tissues between WT and GD3S-KO mice. These results suggest that expression of GD3S allows glioma cells to promote polarization of microglia/macrophages towards M2-like phenotypes by modulating the expression levels of chemokines and cytokines.


Subject(s)
Glioma , Animals , Cytokines , Glioma/genetics , Mice , Mice, Knockout , Severity of Illness Index , Tumor Microenvironment
9.
Cancer Sci ; 112(9): 3756-3768, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34145699

ABSTRACT

High expression of gangliosides GD3 and GD2 is observed in human gliomas. The functions of GD3 and GD2 in malignant properties have been reported in glioma cells in vitro, but those functions have not yet been investigated in vivo. In this study, we showed that deficiency of GD3 synthase (GD3S, St8sia1) attenuated glioma progression and clinical and pathological features in a platelet-derived growth factor B-driven murine glioma model. Lack of GD3S resulted in the prolonged lifespan of glioma-bearing mice and low-grade pathology in generated gliomas. Correspondingly, they showed reduced phosphorylation levels of Akt, Erks, and Src family kinases in glioma tissues. A DNA microarray study revealed marked alteration in the expression of various genes, particularly in MMP family genes, in GD3S-deficient gliomas. Re-expression of GD3S restored expression of MMP9 in primary-cultured glioma cells. We also identified a transcription factor, Ap2α, expressed in parallel with GD3S expression, and showed that Ap2α was critical for the induction of MMP9 by transfection of its cDNA and luciferase reporter genes, and a ChIP assay. These findings suggest that GD3S enhances the progression of gliomas by enhancement of the Ap2α-MMP9 axis. This is the first report to describe the tumor-enhancing functions of GD3S in vivo.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Disease Models, Animal , Glioma/genetics , Glioma/pathology , Sialyltransferases/genetics , Animals , Astrocytes/metabolism , Cells, Cultured , Disease Progression , Gangliosides/metabolism , Gene Expression Regulation, Neoplastic , Longevity/genetics , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Transfection
10.
Anticancer Res ; 41(4): 1821-1830, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33813387

ABSTRACT

BACKGROUND/AIM: Lewis y is expressed in oral squamous cell carcinoma (OSCC) cells and tumors. Previously, we reported that Lewis y was not expressed in invasion areas, and attenuation of proliferation and invasion in OSCC cells was caused by over-expression of Lewis y. However, the roles of Lewis y in the attenuation of malignant properties have not been clarified. In this study, we investigated the roles of Lewis y in OSCC. MATERIALS AND METHODS: The levels of Lewis y on EGFR and the phosphorylation levels of EGFR in OSCC cells were analyzed by immunoprecipitation and western blot. EGFR cross-linking and binding kinetics of EGF were performed. RESULTS: Upon EGF stimulation, phosphorylation and dimer formation of EGFR were more prominent in Lewis y- cells. EGF binding kinetics showed reduced binding sites in Lewis y+ cells. CONCLUSION: Lewis y reduced EGF binding to EGFR, leading to suppression of malignant properties through suppression of EGF signaling.


Subject(s)
Epidermal Growth Factor/metabolism , Lewis Blood Group Antigens/metabolism , Mouth Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Binding Sites , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Shape , ErbB Receptors/metabolism , Humans , Kinetics , Mouth Neoplasms/pathology , Neoplasm Invasiveness , Phosphorylation , Protein Binding , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/pathology
11.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008849

ABSTRACT

Gangliosides have been considered to modulate cell signals in the microdomain of the cell membrane, lipid/rafts, or glycolipid-enriched microdomain/rafts (GEM/rafts). In particular, cancer-associated gangliosides were reported to enhance the malignant properties of cancer cells. In fact, GD2-positive (GD2+) cells showed increased proliferation, invasion, and adhesion, compared with GD2-negative (GD2-) cells. However, the precise mechanisms by which gangliosides regulate cell signaling in GEM/rafts are not well understood. In order to analyze the roles of ganglioside GD2 in the malignant properties of melanoma cells, we searched for GD2-associating molecules on the cell membrane using the enzyme-mediated activation of radical sources combined with mass spectrometry, and integrin ß1 was identified as a representative GD2-associating molecule. Then, we showed the physical association of GD2 and integrin ß1 by immunoprecipitation/immunoblotting. Close localization was also shown by immuno-cytostaining and the proximity ligation assay. During cell adhesion, GD2+ cells showed multiple phospho-tyrosine bands, i.e., the epithelial growth factor receptor and focal adhesion kinase. The knockdown of integrin ß1 revealed that the increased malignant phenotypes in GD2+ cells were clearly cancelled. Furthermore, the phosphor-tyrosine bands detected during the adhesion of GD2+ cells almost completely disappeared after the knockdown of integrin ß1. Finally, immunoblotting to examine the intracellular distribution of integrins during cell adhesion revealed that large amounts of integrin ß1 were localized in GEM/raft fractions in GD2+ cells before and just after cell adhesion, with the majority being localized in the non-raft fractions in GD2- cells. All these results suggest that GD2 and integrin ß1 cooperate in GEM/rafts, leading to enhanced malignant phenotypes of melanomas.


Subject(s)
Gangliosides/metabolism , Integrins/metabolism , Melanoma/pathology , Animals , Antibodies, Monoclonal/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Collagen Type I/metabolism , Gangliosides/immunology , Humans , Integrin beta1/metabolism , Mass Spectrometry , Membrane Microdomains/metabolism , Mice , Phenotype , Phosphotyrosine/metabolism , Signal Transduction/drug effects
12.
Glycobiology ; 31(5): 557-570, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33242079

ABSTRACT

Sialic acids are unique sugars with negative charge and exert various biological functions such as regulation of immune systems, maintenance of nerve tissues and expression of malignant properties of cancers. Alpha 2,6 sialylated N-glycans, one of representative sialylation forms, are synthesized by St6gal1 or St6gal2 gene products in humans and mice. Previously, it has been reported that St6gal1 gene is ubiquitously expressed in almost all tissues. On the other hand, St6gal2 gene is expressed mainly in the embryonic and perinatal stages of brain tissues. However, roles of St6gal2 gene have not been clarified. Expression profiles of N-glycans with terminal α2,6 sialic acid generated by St6gal gene products in the brain have never been directly studied. Using conventional lectin blotting and novel sialic acid linkage-specific alkylamidationmass spectrometry method (SALSA-MS), we investigated the function and expression of St6gal genes and profiles of their products in the adult mouse brain by establishing KO mice lacking St6gal1 gene, St6gal2 gene, or both of them (double knockout). Consequently, α2,6-sialylated N-glycans were scarcely detected in adult mouse brain tissues, and a majority of α2,6-sialylated glycans found in the mouse brain were O-linked glycans. The majority of these α2,6-sialylated O-glycans were shown to be disialyl-T antigen and sialyl-(6)T antigen by mass spectrometry analysis. Moreover, it was revealed that a few α2,6-sialylated N-glycans were produced by the action of St6gal1 gene, despite both St6gal1 and St6gal2 genes being expressed in the adult mouse brain. In the future, where and how sialylated O-linked glycoproteins function in the brain tissue remains to be clarified.


Subject(s)
Brain/metabolism , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Sialyltransferases/genetics , Animals , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Sialyltransferases/deficiency , Sialyltransferases/metabolism , beta-D-Galactoside alpha 2-6-Sialyltransferase
13.
J Biochem ; 168(2): 103-112, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32282910

ABSTRACT

The readthrough of premature termination codon (PTC) by ribosome sometimes produces full-length proteins. We previously reported a readthrough of PTC of glycosyltransferase gene B4GALNT1 with hereditary spastic paraplegia (HSP). Here we featured the readthrough of B4GALNT1 of two mutants, M4 and M2 with PTC by immunoblotting and flow cytometry after transfection of B4GALNT1 cDNAs into cells. Immunoblotting showed a faint band of full-length mutant protein of M4 but not M2 at a similar position with that of wild-type B4GALNT1. AGC sequences at immediately before and after the PTC in M4 were critical for the readthrough. Treatment of cells transfected with mutant M4 cDNA with aminoglycosides resulted in increased readthrough of PTC. Furthermore, treatment of transfectants of mutant M2 cDNA with G418 also resulted in the induction of readthrough of PTC. Both M4 and M2 cDNA transfectants showed increased/induced bands in immunoblotting and GM2 expression in a dose-dependent manner of aminoglycosides. Results of mass spectrometry supported this effect. Here, we showed for the first time the induction and/or enhancement of the readthrough of PTCs of B4GALNT1 by aminoglycoside treatment, suggesting that aminoglycosides are efficient for patients with HSP caused by PTC of B4GALNT1, in which gradual neurological disorders emerged with aging.


Subject(s)
Aminoglycosides/pharmacology , Codon, Nonsense/drug effects , Codon, Terminator/drug effects , N-Acetylgalactosaminyltransferases/genetics , Spastic Paraplegia, Hereditary/genetics , Animals , CHO Cells , Cells, Cultured , Codon, Nonsense/genetics , Codon, Terminator/genetics , Cricetulus , Mice , Mutation
14.
Int J Mol Sci ; 21(6)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168753

ABSTRACT

Acidic glycosphingolipids, i.e., gangliosides, are predominantly and consistently expressed in nervous tissues of vertebrates at high levels. Therefore, they are considered to be involved in the development and function of nervous systems. Recent studies involving genetic engineering of glycosyltransferase genes have revealed novel aspects of the roles of gangliosides in the regulation of nervous tissues. In this review, novel findings regarding ganglioside functions and their modes of action elucidated mainly by studies of gene knockout mice are summarized. In particular, the roles of gangliosides in the regulation of lipid rafts to maintain the integrity of nervous systems are reported with a focus on the roles in the regulation of neuro-inflammation and neurodegeneration via complement systems. In addition, recent advances in studies of congenital neurological disorders due to genetic mutations of ganglioside synthase genes and also in the techniques for the analysis of ganglioside functions are introduced.


Subject(s)
Acidic Glycosphingolipids/metabolism , Glycosyltransferases/genetics , Nervous System/metabolism , Acidic Glycosphingolipids/genetics , Animals , Genetic Engineering , Membrane Microdomains/metabolism , Mice , Mice, Knockout
15.
J Biol Chem ; 294(28): 10833-10845, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31138648

ABSTRACT

To analyze the binding specificity of a sialic acid-recognizing lectin, sialic acid-binding Ig-like lectin 7 (SIGLEC7), to disialyl gangliosides (GD3s), here we established GD3-expressing cells by introducing GD3 synthase (GD3S or ST8SIA1) cDNA into a colon cancer cell line, DLD-1, that expresses no ligands for the recombinant protein SIGLEC7-Fc. SIGLEC7-Fc did not recognize newly-expressed GD3 on DLD-1 cells, even though GD3 was highly expressed, as detected by an anti-GD3 antibody. Because milk-derived GD3 could be recognized by this fusion protein when incorporated onto the surface of DLD-1 cells, we compared the ceramides in DLD-1-generated and milk-derived GD3s to identify the SIGLEC7-specific GD3 structures on the cell membrane, revealing that SIGLEC7 recognizes only GD3-containing regular ceramides but not phytoceramides. This was confirmed by knockdown/knockout of the sphingolipid delta(4)-desaturase/C4-monooxygenase (DES2) gene, involved in phytoceramide synthesis, disclosing that DES2 inhibition confers SIGLEC7 binding. Furthermore, knocking out fatty acid 2-hydroxylase also resulted in the emergence of SIGLEC7 binding to the cell surface. To analyze the effects of binding between SIGLEC7 and various GD3 species on natural killer function, we investigated cytotoxicity of peripheral blood mononuclear cells from healthy donors toward GD3S-transfected DLD-1 (DLD-1-GD3S) cells and DLD-1-GD3S cells with modified ceramides. We found that cytotoxicity is suppressed in DLD-1-GD3S cells with dehydroxylated GD3s. These results indicate that the ceramide structures in glycosphingolipids affect SIGLEC7 binding and distribution on the cell surface and influence cell sensitivity to killing by SIGLEC7-expressing effector cells.


Subject(s)
Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/physiology , Gangliosides/metabolism , Lectins/metabolism , Lectins/physiology , Antigens, Differentiation, Myelomonocytic/genetics , Cell Line, Tumor , Cell Membrane/metabolism , Ceramides/metabolism , Gangliosides/chemistry , Glycosphingolipids/metabolism , Humans , Lectins/chemistry , Lectins/genetics , Leukocytes, Mononuclear/metabolism , N-Acetylneuraminic Acid/metabolism , Protein Binding/physiology , Sialyltransferases/metabolism , Substrate Specificity/physiology
16.
Proc Jpn Acad Ser B Phys Biol Sci ; 95(3): 136-149, 2019.
Article in English | MEDLINE | ID: mdl-30853699

ABSTRACT

Since globotetraosylceramide was defined as a major glycosphingolipid in human erythrocytes, various glycolipids have been found in normal cells and diseased organs. However, the implications of their polymorphic structures in the function of individual cells and tissues have not been clarified. Genetic manipulation of glycosphingolipids in cultured cells and experimental animals has enabled us to substantially elucidate their roles. In fact, great progress has been achieved in the last 70 years in revealing that glycolipids are essential in the maintenance of integrity of nervous tissues and other organs. Furthermore, the correct composition of glycosphingolipids has been shown to be critical for the protection against inflammation and degeneration. Here, we summarized historic information and current knowledge about glycosphingolipids, with a focus on their involvement in inflammation and degeneration. This topic is significant for understanding the biological responses to various stresses, because glycosphingolipids play roles in the interaction with various intrinsic and extrinsic factors. These findings are also important for the application of therapeutic interventions of various diseases.


Subject(s)
Glycosphingolipids/metabolism , Inflammation/metabolism , Neurodegenerative Diseases/metabolism , Animals , Biomarkers/metabolism , Humans , Inflammation/drug therapy , Neurodegenerative Diseases/drug therapy , Protein Binding , Protein Conformation , Signal Transduction
17.
Cancer Sci ; 110(5): 1544-1551, 2019 May.
Article in English | MEDLINE | ID: mdl-30895683

ABSTRACT

Cancer-associated glycosphingolipids have been used as markers for diagnosis and targets for immunotherapy of malignant tumors. Recent progress in the analysis of their implications in the malignant properties of cancer cells revealed that cancer-associated glycosphingolipids are not only tumor markers, but also functional molecules regulating various signals introduced by membrane microdomains, lipid rafts. In particular, a novel approach, enzyme-mediated activation of radical sources combined with mass spectrometry, has enabled us to clarify the mechanisms by which cancer-associated glycosphingolipids regulate cell signals based on the interaction with membrane molecules and formation of molecular complexes on the cell surface. Novel findings obtained from these approaches are now providing us with insights into the development of new anticancer therapies targeting membrane molecular complexes consisting of cancer-associated glycolipids and their associated membrane molecules. Thus, a new era of cancer-associated glycosphingolipids has now begun.


Subject(s)
Glycosphingolipids/metabolism , Neoplasms/metabolism , Animals , Biomarkers, Tumor/metabolism , Cell Membrane/metabolism , Humans , Mass Spectrometry , Signal Transduction
19.
Transl Cancer Res ; 8(3): 1014-1015, 2019 Jun.
Article in English | MEDLINE | ID: mdl-35129554

ABSTRACT

[This corrects the article DOI: 10.21037/tcr.2018.08.21.].

20.
Neuroscience ; 397: 94-106, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30521973

ABSTRACT

B4GALNT1 is an enzyme essential for the synthesis of complex gangliosides, whose absence leads to progressive neurodegeneration with aging in mice. Recently, eleven cases of hereditary spastic paraplegia with mutation in the coding region of B4GALNT1 were reported. However, changes in the enzymatic activity of their products have never been studied. We have constructed expression vectors for individual mutant cDNAs, and examined their activities by cell-free in vitro enzyme assays, and flow cytometry of cells transfected with their expression vectors. Among them, almost all mutant genes showed the complete loss of B4GALNT1 activity in both the in vitro enzyme assays and flow cytometry. Two mutants exceptionally showed weak activity. One of them, M4, had a mutation at amino acid 228 with a premature termination codon. Interestingly, the intensity of fluorescence of GM2 measured by flow cytometry was equivalent between the WT and M4 mutant, although the positive cell population was relatively small in M4. Western immunoblotting of cell lysates from transfectants with cDNA plasmids revealed 67-kDa bands except those containing premature termination codons or frame-shift mutation. Taken together with the clinical findings of patients, loss of enzyme activity may be responsible for the clinical features of hereditary spastic paraplegia, whereas the intensity of neurological disorders was relatively milder than expected. These clinical features of patients including those with male hypogonadism are very similar to the abnormal phenotypes detected in B4galnt1-deficient mice.


Subject(s)
Disease Models, Animal , N-Acetylgalactosaminyltransferases/deficiency , N-Acetylgalactosaminyltransferases/genetics , Spastic Paraplegia, Hereditary/enzymology , Spastic Paraplegia, Hereditary/genetics , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , HEK293 Cells , Humans , Mice, Knockout , Mutation , Phenotype , Spastic Paraplegia, Hereditary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...