Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202402256, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980084

ABSTRACT

We have developed radical C-glycosylation using photoexcitable unprotected glycosyl borate. The direct excitation of glycosyl borate under visible light irradiation enabled the generation of anomeric radical without any photoredox catalysts. The in situ generated anomeric radical was applicable to the radical addition such as Giese-type addition and Minisci-type reaction to introduce alkyl and heteroaryl groups at the anomeric position. In addition, the radical-radical coupling between the glycosyl borate and acyl imidazolide provided unprotected acyl C-glycosides.

2.
Biochem Pharmacol ; 225: 116322, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815630

ABSTRACT

Xenobiotic metabolic reactions in the hepatocyte endoplasmic reticulum (ER) including UDP-glucuronosyltransferase and carboxylesterase play central roles in the detoxification of medical agents with small- and medium-sized molecules. Although the catalytic sites of these enzymes exist inside of ER, the molecular mechanism for membrane permeation in the ER remains enigmatic. Here, we investigated that organic anion transporter 2 (OAT2) regulates the detoxification reactions of xenobiotic agents including anti-cancer capecitabine and antiviral zidovudine, via the permeation process across the ER membrane in the liver. Pharmacokinetic studies in patients with colorectal cancer revealed that the half-lives of capecitabine in rs2270860 (1324C > T) variants was 1.4 times higher than that in the C/C variants. Moreover, the hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine in primary cultured human hepatocytes was reduced by OAT2 inhibitor ketoprofen, whereas capecitabine hydrolysis directly assessed in human liver microsomes were not affected. The immunostaining of OAT2 was merged with ER marker calnexin in human liver periportal zone. These results suggested that OAT2 is involved in distribution of capecitabine into ER. Furthermore, we clarified that OAT2 plays an essential role in drug-drug interactions between zidovudine and valproic acid, leading to the alteration in zidovudine exposure to the body. Our findings contribute to mechanistically understanding medical agent detoxification, shedding light on the ER membrane permeation process as xenobiotic metabolic machinery to improve chemical changes in hydrophilic compounds.


Subject(s)
Endoplasmic Reticulum , Humans , Endoplasmic Reticulum/metabolism , Drug Interactions/physiology , Hepatocytes/metabolism , Hepatocytes/drug effects , Male , Organic Anion Transporters, Sodium-Independent/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Zidovudine/metabolism , Zidovudine/pharmacokinetics , Female , Microsomes, Liver/metabolism
3.
J Am Chem Soc ; 146(7): 4375-4379, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38300804

ABSTRACT

We demonstrate hydrohalogenation of aliphatic alkenes with collidine·HX salts through dual photoredox/cobalt catalysis. The dual catalysis enables conversion of a proton and a halide anion from collidine·HX salt to a nucleophilic hydrogen radical equivalent and an electrophilic halogen radical equivalent and delivery of them to an alkene moiety. This protocol allows for introduction of fluorine, chlorine, bromine, or iodine atom to alkene, producing highly functionalized alkyl halides.

4.
Nat Commun ; 14(1): 6856, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907473

ABSTRACT

Chemical modification of nucleotides can improve the metabolic stability and target specificity of oligonucleotide therapeutics, and alkylphosphonates have been employed as charge-neutral replacements for naturally-occurring phosphodiester backbones in these compounds. However, at present, the alkyl moieties that can be attached to phosphorus atoms in these compounds are limited to methyl groups or primary/secondary alkyls, and such alkylphosphonate moieties can degrade during oligonucleotide synthesis. The present work demonstrates the tertiary alkylation of the phosphorus atoms of phosphites bearing two 2'-deoxynuclosides. This process utilizes a carbocation generated via a light-driven radical-polar crossover mechanism. This protocol provides tertiary alkylphosphonate structures that are difficult to synthesize using existing methods. The conversion of these species to oligonucleotides having charge-neutral alkylphosphonate linkages through a phosphoramidite-based approach was also confirmed in this study.

5.
Chem Sci ; 14(38): 10488-10493, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37799983

ABSTRACT

The biomimetic design of a transition metal complex based on the iron(iv)-oxo porphyrin π-cation radical species in cytochrome P450 enzymes has been studied extensively. Herein, we translate the functions of this iron(iv)-oxo porphyrin π-cation radical species to an α-ketoacyl phosphonium species comprised of non-metal atoms and utilize it as a light-activated oxygenation auxiliary for ortho-selective oxygenation of anilines. Visible light irradiation converts the α-ketoacyl phosphonium species to the excited state, which acts as a transiently generated oxidant. The intramolecular nature of the process ensures high regioselectivity and chemoselectivity. The auxiliary is easily removable. A one-pot protocol is also described.

6.
Chemistry ; 29(46): e202301484, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37260048

ABSTRACT

A quadruple N-heterocyclic carbene/cobalt/photoredox/Brønsted base catalysis to realize branch-selective hydroacylation of styrenes with aromatic and aliphatic aldehydes is demonstrated. This protocol allows access to branched ketones from readily available materials in an atom-economical manner. The quadruple catalysis can transfer a formyl hydrogen of aldehydes as a hydrogen radical equivalent onto the terminal carbon of an alkene by controlled electron and proton transfers.

7.
J Am Chem Soc ; 145(19): 10651-10658, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37141169

ABSTRACT

Photo-caged methodologies have been indispensable for elucidating the functional mechanisms of pharmacologically active molecules at the cellular level. A photo-triggered removable unit enables control of the photo-induced expression of pharmacologically active molecular function, resulting in a rapid increase in the concentration of the bioactive compound near the target cell. However, caging the target bioactive compound generally requires specific heteroatom-based functional groups, limiting the types of molecular structures that can be caged. We have developed an unprecedented methodology for caging/uncaging on carbon atoms using a unit with a photo-cleavable carbon-boron bond. The caging/uncaging process requires installation of the CH2-B group on the nitrogen atom that formally assembles an N-methyl group protected with a photoremovable unit. N-Methylation proceeds by photoirradiation via carbon-centered radical generation. Using this radical caging strategy to cage previously uncageable bioactive molecules, we have photocaged molecules with no general labeling sites, including acetylcholine, an endogenous neurotransmitter. Caged acetylcholine provides an unconventional tool for optopharmacology to clarify neuronal mechanisms on the basis of photo-regulating acetylcholine localization. We demonstrated the utility of this probe by monitoring uncaging in HEK cells expressing a biosensor to detect ACh on the cell surface, as well as Ca2+ imaging in Drosophila brain cells (ex vivo).


Subject(s)
Acetylcholine , Neurotransmitter Agents , Neurotransmitter Agents/chemistry , Neurons , Molecular Structure , Cholinergic Agents
8.
Nat Commun ; 13(1): 2684, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562383

ABSTRACT

Over the past century, significant progress in semipinacol rearrangement involving 1,2-migration of α-hydroxy carbocations has been made in the areas of catalysis and total synthesis of natural products. To access the α-hydroxy carbocation intermediate, conventional acid-mediated or electrochemical approaches have been employed. However, the photochemical semipinacol rearrangement has been underdeveloped. Herein, we report the organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover (RPC). A phenothiazine-based organophotoredox catalyst facilitates the generation of an α-hydroxy non-benzylic alkyl radical followed by oxidation to the corresponding carbocation, which can be exploited to undergo the semipinacol rearrangement. As a result, the photochemical approach enables decarboxylative semipinacol rearrangement of ß-hydroxycarboxylic acid derivatives and alkylative semipinacol type rearrangement of allyl alcohols with carbon electrophiles, producing α-quaternary or α-tertiary carbonyls bearing sp3-rich scaffolds.


Subject(s)
Carbon , Cyclohexenes , Catalysis , Oxidation-Reduction
9.
J Am Chem Soc ; 144(18): 7953-7959, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35476545

ABSTRACT

We demonstrate Markovnikov hydroalkoxylation of unactivated alkenes using alcohols through a triple catalysis consisting of photoredox, cobalt, and Brønsted acid catalysts under visible light irradiation. The triple catalysis realizes three key elementary steps in a single catalytic cycle: (1) Co(III) hydride generation by photochemical reduction of Co(II) followed by protonation, (2) metal hydride hydrogen atom transfer (MHAT) of alkenes by Co(III) hydride, and (3) oxidation of the alkyl Co(III) complex to alkyl Co(IV). The precise control of protons and electrons by the three catalysts allows the elimination of strong acids and external reductants/oxidants that are required in the conventional methods.


Subject(s)
Alkenes , Cobalt , Alcohols , Catalysis , Hydrogen
10.
Org Lett ; 23(18): 7242-7247, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34464143

ABSTRACT

N-Heterocyclic carbene catalysis enabling vicinal trichloromethylacylation of alkenes using tetrachloromethane and aldehydes has been developed. The reaction involves single electron transfer from the enolate form of the Breslow intermediate to tetrachloromethane to generate the persistent Breslow intermediate-derived ketyl radical and a transient trichloromethyl radical. After radical addition of the trichloromethyl radical to an alkene, the prolonged alkyl radical is preferentially captured by the ketyl radical over tetrachloromethane leading to the atom transfer radical addition product.

11.
Org Lett ; 23(15): 5865-5870, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34236860

ABSTRACT

A new type of alkylborate was developed for the purpose of generating radicals via direct photoexcitation. These borates were prepared using 2,2'-(pyridine-2,6-diyl)diphenol as a tridentate ligand together with organoboronic acids or potassium trifluoroborates. The ready availability of organoboron compounds is a significant advantage of this direct photoexcitation protocol. The excited states of these borates can also serve as strong reductants, enabling various transformations.

12.
Nat Commun ; 12(1): 3848, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158509

ABSTRACT

There have been significant advancements in radical reactions using organocatalysts in modern organic synthesis. Recently, NHC-catalyzed radical reactions initiated by single electron transfer processes have been actively studied. However, the reported examples have been limited to catalysis mediated by alkyl radicals. In this article, the NHC organocatalysis mediated by aryl radicals has been achieved. The enolate form of the Breslow intermediate derived from an aldehyde and thiazolium-type NHC in the presence of a base undergoes single electron transfer to an aryl iodide, providing an aryl radical. The catalytically generated aryl radical could be exploited as an arylating reagent for radical relay-type arylacylation of styrenes and as a hydrogen atom abstraction reagent for α-amino C(sp3)-H acylation of secondary amides.

13.
Org Lett ; 23(14): 5415-5419, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34139122

ABSTRACT

An organophotoredox-catalyzed decarboxylative cross-coupling between azole nucleophiles and aliphatic carboxylic acid-derived redox-active esters is demonstrated. This protocol efficiently installs various tertiary or secondary alkyl fragments onto the nitrogen atom of azole nucleophiles under mild and transition-metal-free conditions. The pyridinium additive successfully inhibits the formation of elimination byproducts from the carbocation intermediate. This reaction is applicable to the synthesis of a protein-degrader-like molecule containing an azole and a thalidomide.

14.
Chem Pharm Bull (Tokyo) ; 69(6): 526-528, 2021.
Article in English | MEDLINE | ID: mdl-34078798

ABSTRACT

The optical property of fluorescent unit-conjugated aliphatic oxaboroles has been investigated. The oxaboroles provide good fluorescence quantum yields and selective recognition toward D-ribose and D-ribose containing molecules. The molecular recognition induced significant fluorescence quenching. The property of the boroles showed the possibility of the boron-based nicotinamide adenine dinucleotide (NAD) sensor probe.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , NAD/chemistry , Sugars/analysis , Boron Compounds/chemical synthesis , Fluorescent Dyes/chemical synthesis , Molecular Structure , Optical Phenomena
15.
Org Lett ; 23(11): 4420-4425, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33988371

ABSTRACT

We describe a synthetic approach to sterically hindered α-hydroxy carbonyl compounds through radical-radical coupling. An organic photoredox catalysis reaction converts an aliphatic carboxylic acid and α-ketocarbonyl to a transient alkyl radical and a persistent ketyl radical, respectively, which couple selectively based on the persistent radical effect. This protocol allows the use of primary, secondary, and tertiary aliphatic carboxylic acids to introduce various alkyl substituents onto ketone moieties of α-ketocarbonyls under mild reaction conditions.

16.
Chem Soc Rev ; 50(11): 6320-6332, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33889895

ABSTRACT

Visible-light-mediated chemical processes have been vigorously studied and have led to state-of-the-art synthetic chemistry since they enable the control of radical generation and excited-state-based transformations. The essential process is the generation of a radical species via single electron transfer (SET) between the substrate and catalyst. While photoredox chemistry is an important methodology, these systems essentially require photocatalysts and involve redox processes of the catalyst in the catalytic cycle, which often complicates the reaction. Hence, a seminal contribution in the area of photoredox chemistry is the development of a system free of a photoredox catalyst. In this tutorial review, we summarise the chronology of C-centred radicals, including photoredox chemistry, and shed light on the direct excitation strategy that enables the generation of radical species without exogenous photocatalysts. This strategy provides more straightforward methods, which are energetically efficient in principle, with the potential to open a new window into organic synthesis.

17.
Chemistry ; 27(24): 7094-7098, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33769641

ABSTRACT

A reductive cross-coupling reaction between aromatic aldehydes and arylnitriles using a copper catalyst and a silylboronate as a reductant is reported. This protocol represents an unprecedented approach to the chemoselective synthesis of α-hydroxy ketones by electrophile-electrophile cross-coupling.

18.
Org Lett ; 23(5): 1798-1803, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33569947

ABSTRACT

This manuscript describes a visible-light-mediated organophotoredox catalytic process for vicinal difunctionalization of alkenes using heteroatom nucleophiles and aliphatic redox active esters. A wide range of heteroatom nucleophiles including alcohols, water, carboxylic acids, amides, and halogens can be used for this reaction. This radical relay type reaction allows forging of C(sp3)-C(sp3) with a carbon-centered radical and C(sp3)-heteroatom bonds with a benzyl cation on the vinylarenes with complete regioselectivity in a single step.


Subject(s)
Alcohols/chemistry , Amides/chemistry , Carboxylic Acids/chemistry , Alkenes/chemistry , Carbon/chemistry , Catalysis , Esters , Molecular Structure , Oxidation-Reduction , Water/chemistry
19.
Angew Chem Int Ed Engl ; 59(50): 22460-22464, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-32869918

ABSTRACT

The transition-metal-free cross-coupling of alkyl or aryl electrophiles by using tertiary benzylic organoboronates is reported. This reaction involves the generation of tertiary alkyl anions from organoboronates in the presence of an alkoxide base and then their substitution reactions. This protocol allows the simple and efficient construction of quaternary carbon centers.

20.
Org Biomol Chem ; 18(34): 6598-6601, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32812987

ABSTRACT

Boracene-based alkylborate enabled visible light-mediated metallaphotoredox catalysis. The directly excited borate was easily oxidatively quenched by an excited Ir photoredox catalyst. Ni/Ir hybrid catalysis afforded the products under significantly low irradiance.

SELECTION OF CITATIONS
SEARCH DETAIL
...