Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 7(5): 561-565, 2018 May 15.
Article in English | MEDLINE | ID: mdl-35632931

ABSTRACT

Mechanochemical postpolymerization modification is reported herein. The fast and efficient synthesis of a library of macromolecules with functional diversity and structural uniformity was realized without a solvent by means of a high speed ball-milling technique. A series of polymers prepared from 4-vinylbenzaldehyde (4-VBA) underwent solid-state Schiff base formations with a series of amines and amine derivatives. The efficient mixing and energy delivery provided by the collisions between balls not only promoted rapid imine formation but also eliminated the need for a chemical solvent, which is highly desirable for green chemical synthesis.

2.
ChemSusChem ; 10(18): 3529-3533, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28613397

ABSTRACT

Mechanochemical polymerization of lactide is carried out by using ball milling. Mechanical energy from collisions between the balls and the vessel efficiently promotes an organic-base-mediated metal- and solvent-free solid-state polymerization. Investigation of the parameters of the ball-milling synthesis revealed that the degree of lactide ring-opening polymerization could be modulated by the ball-milling time, vibration frequency, mass of the ball media, and liquid-assisted grinding. Liquid-assisted grinding was found to be an especially important factor for achieving a high degree of mechanochemical polymerization. Although polymer-chain scission from the strong collision energy prevented mechanical-force-driven high-molecular-weight polymer synthesis, the addition of only a small amount of liquid enabled sufficient energy dissipation and poly(lactic acid) was thereby obtained with a molecular weight of over 1×105  g mol-1 .


Subject(s)
Dioxanes/chemistry , Green Chemistry Technology , Mechanical Phenomena , Polyesters/chemistry , Polyesters/chemical synthesis , Polymerization , Chemistry Techniques, Synthetic , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...