Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Stem Cells Dev ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38717965

ABSTRACT

Type 2 diabetes mellitus (T2DM) is associated with endothelial dysfunction, which results in delayed wound healing. Mesenchymal stem cells (MSCs) play a vital role in supporting endothelial cells (ECs) and promoting wound healing by paracrine effects through their secretome-containing extracellular vesicles. We previously reported the impaired wound healing ability of adipose tissue-derived MSC from T2DM donors; however, whether extracellular vesicles isolated from T2DM adipose tissue-derived MSCs (dEVs) exhibit altered functions in comparison to those derived from healthy donors (nEVs) is still unclear. In this study, we found that nEVs induced EC survival and angiogenesis, whereas dEVs lost these abilities. In addition, under high glucose conditions, nEV protected ECs from endothelial-mesenchymal transition (EndMT), whereas dEV significantly induced EndMT by activating the transforming growth factor-ß/Smad3 signaling pathway, which impaired the tube formation and in vivo wound healing abilities of ECs. Interestingly, the treatment of dEV-internalized ECs with nEVs rescued the induced EndMT effects. Of note, the internalization of nEV into T2DM adipose tissue-derived MSC resulted in the production of an altered n-dEV, which inhibited EndMT and supported the survival of T2DM db/db mice from severe wounds. Taken together, our findings suggest the role of dEV in endothelial dysfunction and delayed wound healing in T2DM by the promotion of EndMT. Moreover, nEV treatment can be considered a promising candidate for cell-free therapy to protect ECs in T2DM.

2.
Front Oncol ; 14: 1346312, 2024.
Article in English | MEDLINE | ID: mdl-38515582

ABSTRACT

Introduction: SARS-CoV-2 infection increases the risk of worse outcomes in cancer patients, including those with breast cancer. Our previous study reported that the SARS-CoV-2 membrane protein (M-protein) promotes the malignant transformation of triple-negative breast cancer cells (triple-negative BCC). Methods: In the present study, the effects of M-protein on the ability of extracellular vesicles (EV) derived from triple-negative BCC to regulate the functions of tissue stem cells facilitating the tumor microenvironment were examined. Results: Our results showed that EV derived from M-protein-induced triple-negative BCC (MpEV) significantly induced the paracrine effects of adipose tissue-derived mesenchymal stem cells (ATMSC) on non-aggressive BCC, promoting the migration, stemness phenotypes, and in vivo metastasis of BCC, which is related to PGE2/IL1 signaling pathways, in comparison to EV derived from normal triple-negative BCC (nEV). In addition to ATMSC, the effects of MpEV on endothelial progenitor cells (EPC), another type of tissue stem cells, were examined. Our data suggested that EPC uptaking MpEV acquired a tumor endothelial cell-like phenotype, with increasing angiogenesis and the ability to support the aggressiveness and metastasis of non-aggressive BCC. Discussion: Taken together, our findings suggest the role of SARS-CoV-2 M-protein in altering the cellular communication between cancer cells and other non-cancer cells inside the tumor microenvironment via EV. Specifically, M-proteins induced the ability of EV derived from triple-negative BCC to promote the functions of non-cancer cells, such as tissue stem cells, in tumorigenesis.

3.
Stem Cells Dev ; 32(19-20): 592-605, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37392019

ABSTRACT

Glucocorticoids are common anti-inflammatory factors; however, they have been reported to have side effects that delay the wound healing process. In a previous study, we found that mesenchymal stem cells isolated from the adipose tissue of patients with long-term glucocorticoid treatment (sAT-MSC) showed impaired wound healing ability due to the downregulation of SDF-1. In this study, we aimed to clarify the mechanisms by which SDF-1 is regulated in sAT-MSC by focusing on the roles of hypoxia-inducible factors (HIFs). Our data suggested that sAT-MSC showed impairment of HIF-1α and the upregulation of HIF-2α. Notably, HIF-2α impairment resulted in the compensatory overexpression of HIF-1α and its target gene SDF-1, which improved the wound healing ability of sAT-MSC. In addition, using knockdown/knockout heterozygous HIF-2α kd/null mice (kd/null), the functions of HIF-2α in the ischemic wound healing process were clarified. With a 50% reduction in the expression of HIF-2α, kd/null mice showed significantly induced wound healing effects, which are involved in the promotion of the inflammatory phase. Specifically, kd/null mice showed the compensatory overexpression of HIF-1α, which upregulated the expression of SDF-1 and enhanced the recruitment of inflammatory cells, such as neutrophils. Our study highlighted the novel function of HIF-2α in the inflammation phase of the wound healing process through the HIF-1α/SDF-1 axis, suggesting that the physiological state of the impaired expression of HIF-2α is a new concept for wound therapy.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Mesenchymal Stem Cells , Animals , Humans , Mice , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mesenchymal Stem Cells/metabolism , Transcriptional Activation , Up-Regulation , Wound Healing/genetics
4.
Front Public Health ; 10: 946077, 2022.
Article in English | MEDLINE | ID: mdl-36330124

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has influenced antibiotic consumption over a long period, with variability in trends among studies. We conducted this systematic review to explore and compare the effect of the pandemic on overall and individual antibiotic consumption in 2020 with that in 2019. Methods: This systematic literature review was conducted using PubMed, EMBASE, and Web of Science databases. Data on antibiotic consumption in Japan was sourced from the Japan Surveillance of Antimicrobial Consumption. Results: A total of 1,442 articles and reports were screened, and 16 eligible articles were reviewed. The included studies were conducted in Jordan, Australia, Canada, UK, Japan, Brazil, India, China, and the EU. There was no study from African and Southeast Asian Countries. Overall, antibiotic consumption in the community consistently reduced in 2020. Studies from Australia, Canada, Portugal, Spain, the UK, Japan, and the European Union reported both decreases in overall and selected individual antibiotics consumption. In contrast, hospital-based studies reported both increases and decreases. Hospital-based studies in Lebanon, Spain, Italy, India, and the UK reported an increase in antibiotic consumption in 2020. Studies reporting an interruption of antibiotic stewardship programs during the pandemic also reported increases in antibiotic consumption for hospitalized patients in 2020 compared with that in 2019. Conclusion: Our results showed a different trend between communities and hospitals in antibiotic consumption during 2020 compared to 2019. The continuity of the antibiotic stewardship program might have influenced the antibiotic consumption trend variability among hospitals in 2020. Alongside this, the lack of information on antibiotic consumption from low-income countries and limited reports from middle-income countries revealed gaps that need to be urgently filled.


Subject(s)
Antimicrobial Stewardship , COVID-19 Drug Treatment , COVID-19 , Humans , Anti-Bacterial Agents/therapeutic use , Pandemics , COVID-19/epidemiology , Hospitals
5.
Front Cell Dev Biol ; 10: 869850, 2022.
Article in English | MEDLINE | ID: mdl-36120585

ABSTRACT

Introduction: The therapeutic effects of endothelial progenitor cells (EPC) in neovascularization have been suggested; however, to date, few studies have been conducted on the ability of EPC-derived extracellular vesicles (EV) to rescue the ischemic tissues. In order to examine the functional sources of EV for cell-free therapy of ischemic diseases, we compared the functions of EPC-EV and those of Wharton's Jelly-derived mesenchymal stem cell (WJ-EV) in the flap mouse model. Results and conclusion: Our results demonstrated that in the intravenous injection, EPC-EV, but not WJ-EV, were uptaken by the ischemic tissues. However, EPC-EV showed poor abilities to induce neovascularization and the recovery of ischemic tissues. In addition, compared to EPC-EV, WJ-EV showed a higher ability to rescue the ischemic injury when being locally injected into the mice. In order to induce the secretion of high-functional EPC-EV, EPC were internalized with hypoxic pre-treated WJ-EV, which resulted in a transformed hwEPC. In comparison to EPC, hwEPC showed induced proliferation and upregulation of angiogenic genes and miRNAs and promoted angiogenic ability. Interestingly, hwEPC produced a modified EV (hwEPC-EV) that highly expressed miRNAs related to angiogenesis, such as miR-155, miR-183, and miR-296. Moreover, hwEPC-EV significantly induced the neovascularization of the ischemic tissues which were involved in promoting the proliferation, the expression of VEGF and miR-183, and the angiogenic functions of endothelial cells. Of note, hwEPC-EV were highly uptaken by the ischemic tissues and showed a greater effect with regard to inducing recovery from ischemic injury in the intravenous administration, compared to EPC-EV. Therefore, hwEPC-EV can be considered a functional candidate for cell-free therapy to treat the distal ischemic tissues.

6.
Sci Rep ; 12(1): 13550, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941273

ABSTRACT

Triple negative breast cancer (TNBC) is associated with worse outcomes and results in high mortality; therefore, great efforts are required to find effective treatment. In the present study, we suggested a novel strategy to treat TNBC using mesenchymal stem cell (MSC)-derived extracellular vesicles (EV) to transform the behaviors and cellular communication of TNBC cells (BCC) with other non-cancer cells related to tumorigenesis and metastasis. Our data showed that, BCC after being internalized with EV derived from Wharton's Jelly MSC (WJ-EV) showed the impaired proliferation, stemness properties, tumorigenesis and metastasis under hypoxic conditions. Moreover, these inhibitory effects may be involved in the transfer of miRNA-125b from WJ-EV to BCC, which downregulated the expression of HIF1α and target genes related to proliferation, epithelial-mesenchymal transition, and angiogenesis. Of note, WJ-EV-internalized BCC (wBCC) showed transformed behaviors that attenuated the in vivo development and metastatic ability of TNBC, the angiogenic abilities of endothelial cells and endothelial progenitor cells and the generation of cancer-associated fibroblasts from MSC. Furthermore, wBCC generated a new EV with modified functions that contributed to the inhibitory effects on tumorigenesis and metastasis of TNBC. Taken together, our findings suggested that WJ-EV treatment is a promising therapy that results in the generation of wBCC to interrupt the cellular crosstalk in the tumor environment and inhibit the tumor progression in TNBC.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Triple Negative Breast Neoplasms , Wharton Jelly , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endothelial Cells , Humans , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy , Wharton Jelly/metabolism
7.
Front Oncol ; 12: 923467, 2022.
Article in English | MEDLINE | ID: mdl-35747796

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread faster due to the emergence of SARS-CoV-2 variants, which carry an increased risk of infecting patients with comorbidities, such as breast cancer. However, there are still few reports on the effects of SARS-CoV-2 infection on the progression of breast cancer, as well as the factors and mechanisms involved. In the present study, we investigated the impact of SARS-CoV-2 proteins on breast cancer cells (BCC). The results suggested that SARS-CoV-2 M protein induced the mobility, proliferation, stemness and in vivo metastasis of a triple-negative breast cancer (TNBC) cell line, MDA-MB-231, which are involved in the upregulation of NFκB and STAT3 pathways. In addition, compared to MDA-MB-231 cells, the hormone-dependent breast cancer cell line MCF-7 showed a less response to M protein, with the protein showing no effects of promoting proliferation, stemness, and in vivo metastasis. Of note, coculture with M protein-treated MDA-MB-231 cells significantly induced the migration, proliferation, and stemness of MCF-7 cells, which are involved in the upregulation of genes related to EMT and inflammatory cytokines. Therefore, SARS-CoV-2 infection might promote the ability of aggressive BCC to induce the malignant phenotypes of the other non-aggressive BCC. Taken together, these findings suggested an increased risk of poor outcomes in TNBC patients with a history of SARS-CoV-2 infection, which required a long-term follow-up. In addition, the inhibition of NFκB and STAT3 signaling pathways is considered as a promising candidate for the treatment of worsen clinical outcomes in TNBC patients with COVID-19.

8.
Stem Cells Dev ; 31(21-22): 659-671, 2022 11.
Article in English | MEDLINE | ID: mdl-35734905

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly aggressive and invasive type of breast cancer. In addition, type 2 diabetes mellitus (T2DM) is recognized as a risk factor for cancer metastasis, which is associated with mortality in patients with breast cancer. Cancer-associated fibroblasts (CAFs) generated from adipose tissue-derived mesenchymal stem cells (AT-MSCs) play a vital role in the progression of TNBC. However, to date, whether T2DM affects the ability of AT-MSCs to differentiate into CAFs is still unclear. In this study, we found that in coculture with TNBC cells [breast cancer cells (BCCs)] under hypoxic conditions, AT-MSCs derived from T2DM donors (dAT-MSCs) were facilitated to differentiate into CAFs, which showed fibroblastic morphology and the induced expression of fibroblastic markers, such as fibroblast activation protein, fibroblast-specific protein, and vimentin. This was involved in the higher expression of transforming growth factor beta receptor 2 (TGFßR2) and the phosphorylation of Smad2/3. Furthermore, T2DM affected the fate and functions of CAFs derived from dAT-MSCs. While CAFs derived from AT-MSCs of healthy donors (AT-CAFs) exhibited the markers of inflammatory CAFs, those derived from dAT-MSCs (dAT-CAFs) showed the markers of myofibroblastic CAFs. Of note, in comparison with AT-CAFs, dAT-CAFs showed a higher ability to induce the proliferation and in vivo metastasis of BCCs, which was involved in the activation of the transforming growth factor beta (TGFß)-Smad2/3 signaling pathway. Collectively, our study suggests that T2DM contributes to metastasis of BCCs by inducing the myofibroblastic CAFs differentiation of dAT-MSCs. In addition, targeting the TGFß-Smad2/3 signaling pathway in dAT-MSCs may be useful in cancer therapy for TNBC patients with T2DM.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Diabetes Mellitus, Type 2 , Mesenchymal Stem Cells , Triple Negative Breast Neoplasms , Humans , Female , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Breast Neoplasms/pathology , Diabetes Mellitus, Type 2/metabolism , Cell Line, Tumor , Fibroblasts , Transforming Growth Factor beta/metabolism
9.
Front Big Data ; 4: 631073, 2021.
Article in English | MEDLINE | ID: mdl-34381994

ABSTRACT

The outbreak of the COVID-19 pandemic has had an unprecedented impact on humanity as well as research activities in life sciences and medicine. Between January and August 2020, the number of coronavirus-related scientific articles was roughly 50 times more than that of articles published in the entire year of 2019 in PubMed. It is necessary to better understand the dynamics of research on COVID-19, an emerging topic, and suggest ways to understand and improve the quality of research. We analyze the dynamics of coronavirus research before and after the outbreaks of SARS, MERS, and COVID-19 by examining all the published articles from the past 25 years in PubMed. We delineate research networks on coronaviruses as we identify experts' background in terms of topics of previous research, affiliations, and international co-authorships. Two distinct dynamics of coronavirus research were found: 1) in the cases of regional pandemics, SARS and MERS, the scope of cross-disciplinary research remained between neighboring research areas; 2) in the case of the global pandemic, COVID-19, research activities have spread beyond neighboring disciplines with little transnational collaboration. Thus, COVID-19 has transformed the structure of research on coronaviruses as an emerging issue. Knowledge on COVID-19 is distributed across the widest range of disciplines, transforming research networks well beyond the field of medicine but within national boundaries. Given the unprecedented scale of COVID-19 and the nationalization of responses, the most likely way forward is to accumulate local knowledge with the awareness of transdisciplinary research dynamics.

10.
Stem Cells Dev ; 30(15): 758-772, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34074129

ABSTRACT

Cytokine storm is recognized as one of the factors contributing to organ failures and mortality in patients with COVID-19. Due to chronic inflammation, COVID-19 patients with diabetes mellitus (DM) or renal disease (RD) have more severe symptoms and higher mortality. However, the factors that contribute to severe outcomes of COVID-19 patients with DM and RD have received little attention. In an effort to investigate potential treatments for COVID-19, recent research has focused on the immunomodulation functions of mesenchymal stem cells (MSCs). In this study, the correlation between DM and RD and the severity of COVID-19 was examined by a combined approach with a meta-analysis and experimental research. The results of a systematic review and meta-analysis suggested that the odd of mortality in patients with both DM and RD was increased in comparison to those with a single comorbidity. In addition, in the experimental research, the data showed that high glucose and uremic toxins contributed to the induction of cytokine storm in human lung adenocarcinoma epithelial cells (Calu-3 cells) in response to SARS-CoV Peptide Pools. Of note, the incorporation of Wharton's jelly MSC-derived extracellular vesicles (WJ-EVs) into SARS-CoV peptide-induced Calu-3 resulted in a significant decrease in nuclear NF-κB p65 and the downregulation of the cytokine storm under high concentrations of glucose and uremic toxins. This clearly suggests the potential for WJ-EVs to reduce cytokine storm reactions in patients with both chronic inflammation diseases and viral infection.


Subject(s)
Cytokine Release Syndrome/prevention & control , Extracellular Vesicles/physiology , Mesenchymal Stem Cells/cytology , SARS-CoV-2/physiology , Wharton Jelly/cytology , Adult , Aged , COVID-19/blood , COVID-19/complications , COVID-19/metabolism , COVID-19/therapy , Cells, Cultured , Coculture Techniques , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/virology , Cytokines/genetics , Cytokines/metabolism , Diabetes Complications/blood , Diabetes Complications/metabolism , Diabetes Complications/therapy , Diabetes Complications/virology , Diabetes Mellitus/blood , Diabetes Mellitus/metabolism , Diabetes Mellitus/therapy , Diabetes Mellitus/virology , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Glucose/metabolism , Glucose/pharmacology , Humans , Inflammation Mediators/metabolism , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Pregnancy , Toxins, Biological/metabolism , Toxins, Biological/pharmacology , Umbilical Cord/cytology , Uremia/blood , Uremia/complications , Uremia/metabolism , Uremia/therapy
11.
Sci Rep ; 10(1): 17315, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057147

ABSTRACT

Aging induces numerous cellular disorders, such as the elevation of reactive oxygen species (ROS), in a number type of cells, including mesenchymal stem cells (MSCs). However, the correlation of ROS and impaired healing abilities as well as whether or not the inhibition of elevating ROS results in the rejuvenation of elderly MSCs is unclear. The rejuvenation of aged MSCs has thus recently received attention in the field of regenerative medicine. Specifically, extracellular vesicles (EVs) act as a novel tool for stem cell rejuvenation due to their gene transfer ability with systemic effects and safety. In the present study, we examined the roles of aging-associated ROS in the function and rejuvenation of elderly MSCs by infant EVs. The data clearly showed that elderly MSCs exhibited the downregulation of superoxide dismutase (SOD)1 and SOD3, which resulted in the elevation of ROS and downregulation of the MEK/ERK pathways, which are involved in the impairment of the MSCs' ability to decrease necrotic area in the skin flap model. Furthermore, treatment with the antioxidant Edaravone or co-overexpression of SOD1 and SOD3 rescued elderly MSCs from the elevation of ROS and cellular senescence, thereby improving their functions. Of note, infant MSC-derived EVs rejuvenated elderly MSCs by inhibiting ROS production and the acceleration of cellular senescence and promoting the proliferation and in vivo functions in both type 1 and type 2 diabetic mice.


Subject(s)
Extracellular Vesicles/physiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Reactive Oxygen Species/metabolism , Rejuvenation/physiology , Aging/metabolism , Animals , Cellular Senescence/physiology , Diabetes Mellitus, Experimental/metabolism , Humans , MAP Kinase Signaling System , Mesenchymal Stem Cells/metabolism , Mice , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/metabolism
12.
Stem Cells Dev ; 29(21): 1382-1394, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32900278

ABSTRACT

Cancer metastasis is the leading cause of mortality among breast cancer patients. Type 2 diabetes mellitus (T2DM) has been suggested as a risk factor of breast cancer; however, whether or not T2DM is associated with breast tumor metastasis remains unclear. In this study, we examined the involvement of T2DM with breast cancer metastasis by a combined approach of a meta-analysis and experimental research. The results of a systematic review and meta-analysis suggested that diabetes significantly increases the risk of lymph node metastasis by 1.10-fold (P < 0.01). Consistently, our data from experimental research showed that T2DM induced paracrine effects of mesenchymal stem cells (MSCs), a key contributor to cancer progression, to stimulate metastasis of breast cancer cells (BCCs) by two independent mechanisms. First, T2DM induced the excess secretion of interleukin 6 (IL6) from MSCs, which activated the JAK/STAT3 pathway in BCCs, thus promoting the metastasis of BCCs. Second, beside the EGR-1-/IL6-dependent mechanism, T2DM altered the functions of MSC-derived extracellular vesicles (EVs), which are highly associated with the metastasis of BCCs. Our present study showed that T2DM is a risk factor for breast cancer metastasis, and MSC-derived EVs might be useful for developing a novel anti-breast cancer therapy strategy.


Subject(s)
Breast Neoplasms/pathology , Diabetes Mellitus, Type 2/pathology , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Paracrine Communication , Adipose Tissue/pathology , Animals , Cell Line, Tumor , Cell Movement , Early Growth Response Protein 1/pharmacology , Extracellular Vesicles/drug effects , Female , Humans , Interleukin-6/pharmacology , Janus Kinases/metabolism , Male , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Models, Biological , Neoplasm Metastasis , Paracrine Communication/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
13.
Stem Cells Dev ; 28(21): 1434-1450, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31507235

ABSTRACT

Embryonic stem (ES) cells have been utilized as an excellent model for the study of neural development. However, the dynamic changes of ES cell-derived neural stem cells (ES-NSCs), under the effects of prolonged cell culture and hypoxic conditions, are still obscured. In the present study, using the combination of serum-free culture of embryoid body-like aggregates (SFEB) culture and cell sorting by Sox-1, the ES-NSCs were easily isolated and showed in vitro temporal neural specification, which resulted in distinct cell fates after neural differentiation. Early passaged ES-NSCs gave rise to neurons, whereas late-passaged ES-NSCs gave rise to glial cells, similar to the in vivo dynamic changes during the neural development. Remarkably, hypoxia treatment induced the neural differentiation of ES-NSCs but did not affect the cell fate. Under hypoxic conditions, early passaged ES-NSCs showed the upregulation of neuronal markers, whereas late-passaged ES-NSCs showed the upregulation of a glial marker. In addition, the knockdown of the hypoxia-inducible factor 1α expression impaired the neuronal differentiation of early passaged ES-NSCs under hypoxic conditions. These data demonstrated the distinct effects of prolonged culture and hypoxic stimuli on the neural differentiation of ES-NSCs; prolonged culture was involved in the cell fate after neural differentiation, while hypoxia treatment efficiently promoted neural differentiation.


Subject(s)
Mouse Embryonic Stem Cells/cytology , Neural Stem Cells/cytology , Neurogenesis/physiology , Neuroglia/cytology , Neurons/cytology , Animals , Cell Hypoxia/physiology , Cells, Cultured , Embryoid Bodies/physiology , Flow Cytometry/methods , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Neural Stem Cells/physiology , RNA Interference , RNA, Small Interfering/genetics , SOXB1 Transcription Factors/metabolism
14.
Front Med (Lausanne) ; 5: 276, 2018.
Article in English | MEDLINE | ID: mdl-30324106

ABSTRACT

Background: Endothelial progenitor cells (EPCs) can be used to treat ischemic disease in cell-based therapy owing to their neovascularization potential. Glucocorticoids (GCs) have been widely used as strong anti-inflammatory reagents. However, despite their beneficial effects, side effects, such as impairing wound healing are commonly reported with GC-based therapy, and the effects of GC therapy on the wound healing function of EPCs are unclear. Methods: In this study, we investigated how GC treatment affects the characteristics and wound healing function of EPCs. Results: We found that GC treatment reduced the proliferative ability of EPCs. In addition, the expression of CXCR4 was dramatically impaired, which suppressed the migration of EPCs. A transplantation study in a flap mouse model revealed that GC-treated EPCs showed a poor homing ability to injured sites and a low activity for recruiting inflammatory cells, which led to wound healing dysfunction. Impairment of prostaglandin E2 (PGE2) synthases, cyclooxygenase (COX2) and microsomal PGE2 synthase 1 (mPEGS1) were identified as being involved in the GC-induced impairment of the CXCR4 expression in EPCs. Treatment with PGE2 rescued the expression of CXCR4 and restored the migration ability of GC-treated EPCs. In addition, the PGE2 signal that activated the PI3K/AKT pathway was identified to be involved in the regulation of CXCR4 in EPCs under the effects of GCs. In addition, similar negative effects of GCs were observed in EPCs under hypoxic conditions. Under hypoxic conditions, GCs independently impaired the PGE2 and HIF2α pathways, which downregulated the expression of CXCR4 in EPCs. Our findings highlighted the influences of GCs on the characteristics and functions of EPCs, suggesting that the use of EPCs for autologous cell transplantation in patients who have used GCs for a long time should be considered carefully.

15.
Oncol Lett ; 16(4): 4737-4744, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30214607

ABSTRACT

Cancer stem cells (CSCs) are a subpopulation of cancer cells responsible for tumor maintenance and relapse due to their ability to resist various anticancer effects. Owing to the resistance of CSCs to the effects of targeted therapy, an alternative strategy that targets post-translational glycosylation may be an improved approach to treat cancer as it disrupts multiple coordinated signaling that maintains the stemness of CSCs. Glucosamine acts as an anticancer agent possibly by inhibiting N-linked glycosylation. The aim of the present study was to investigate the effect of glucosamine on the stemness of breast CSCs, which is regulated by signal transducer and activator of transcription 3 (STAT3) signaling. Human aldehyde dehydrogenase-positive (ALDH+) breast CSCs and MCF7 cells were treated with various concentrations (0.25, 1 or 4 mM) of glucosamine for 24 h. Subsequently, cell viability was determined by performing a trypan blue exclusion assay, pluripotency gene [ALDH 1 family member A1 (ALDH1A1), octamer-binding transcription factor 4 (OCT-4), and Krüppel-like factor 4 (KLF4)] expression was determined using the reverse transcription-quantitative polymerase chain reaction, and STAT3 and phosphorylated STAT3 (pSTAT3) levels were determined by performing western blot analysis. Furthermore, the number of mammosphere-forming units (MFUs) in ALDH+ breast CSCs and MCF7 cells was determined. It was determined that glucosamine treatment decreased the viability of ALDH+ breast CSCs. Glucosamine treatment also decreased the stemness of ALDH+ breast CSCs and MCF7 cells, as indicated by decreased ALDH1A1, OCT-4 and KLF4 expression level, and a decreased number of MFUs. This effect of glucosamine may be associated with a decreased pSTAT3/STAT3 ratio, indicating that glucosamine inhibited STAT3 activation; therefore, the results of the present study indicated that glucosamine treatment may be an improved approach to target the stemness of CSCs.

16.
BMC Res Notes ; 11(1): 449, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29986746

ABSTRACT

OBJECTIVE: Earlier studies from our group using hypoxia-inducible factor 3α knockout mice showed impairments in lung remodeling and lung endothelial cells. Another research from our group demonstrated that impaired expression of hypoxia-inducible factor 2α induced compensatory expression of hypoxia-inducible factor 1α in hypoxia-inducible factor 2α knockdown mice. The present study uncovers more insights by extending the investigation, utilizing mice with both hypoxia-inducible factor 3α knockout and hypoxia-inducible factor 2α knockdown. RESULTS: No mice with both hypoxia-inducible factor 3α knockout and hypoxia-inducible factor 2α knockdown died immediately after birth. The mice with both hypoxia-inducible factor 3α knockout and hypoxia-inducible factor 2α knockdown exhibited impaired alveolar sacs and lung alveolar structure and decreased endothelial cell numbers. Analysis of relative mRNA expression revealed depressed expressions of hypoxia-inducible factor 1α, vascular cell adhesion molecule 1, vascular endothelial cadherin, angiopoietin 2, Tie-2, and vascular endothelial growth factor in the lungs of mice with both hypoxia-inducible factor 3α knockout and hypoxia-inducible factor 2α knockdown compared to that in wild-type mice. Further analysis is needed to elucidate the impaired development occurred in the lung endothelial cells.


Subject(s)
Mice, Knockout , Pulmonary Alveoli/growth & development , Transcription Factors/genetics , Animals , Apoptosis Regulatory Proteins , Basic Helix-Loop-Helix Transcription Factors , Endothelial Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Mice , Mice, Inbred C57BL , Repressor Proteins , Vascular Endothelial Growth Factor A
17.
Bone Marrow Res ; 2018: 1549826, 2018.
Article in English | MEDLINE | ID: mdl-29682351

ABSTRACT

The purpose of this study was to quantify the stem cell and growth factor (GF) contents in the bone marrow aspirate concentrate (BMAC) and platelet-rich plasma (PRP) prepared from whole blood using a protocol established in our laboratory. We examined 10 patients with osteonecrosis of the femoral head who were treated by autologous BMAC transplantation at our hospital between January 2015 and June 2015. We quantified CD34+ and CD31-CD45-CD90+CD105+ cells in BMAC and PRP by flow cytometry. Additionally, we measured various GFs, that is, basic fibroblast growth factor (b-FGF), platelet-derived growth factor-BB (PDGF-BB), vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1), and bone morphogenetic protein-2 (BMP-2) in BMAC and PRP using enzyme-linked immunosorbent assays and statistical analyses. CD34+ and CD31-45-90+105+ cells accounted for approximately 1.9% and 0.03% of cells in BMAC and no cells in PRP. The concentration of b-FGF was higher in BMAC than in PRP (P < 0.001), whereas no significant differences in the levels of PDGF-BB, VEGF, TGF-ß1, and BMP-2 were observed between the two types of sample. BMAC had an average of 1.9% CD34+ and 0.03% CD31-45-90+105+ cells and higher levels of b-FGF than those of PRP.

18.
Biochem Biophys Res Commun ; 500(3): 682-690, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29678576

ABSTRACT

In the body, different types of adipose tissue perform different functions, with brown and beige adipose tissues playing unique roles in dissipating energy. Throughout life, adipocytes are regenerated from progenitors, and this process is impaired by aging. One of the progenitors of adipocytes are mesenchymal stem cells (MSCs), which have recently become a promising tool for stem cell therapy. However, whether or not aging impairs the brown/beige adipocyte differentiation of adipose tissue-derived MSCs (AT-MSCs) remains unclear. In the present study, we isolated AT-MSCs from two different age groups of donors (infants and elderly subjects) and examined the effects of aging on the AT-MSC brown/beige adipocyte differentiation ability. We found that none of the AT-MSCs expressed Myf5, which indicated the beige (not brown) differentiation ability of cells. Of note, an inverse correlation was noted between the beige adipocyte differentiation ability and age, with AT-MSCs derived from elderly donors showed the most severely reduced function due to induced cellular senescence. The impaired expression of Sirtuin 1 (Sirt1) and Sirt3 proved to be responsible for the induction of senescence in elderly AT-MSCs; however, only Sirt1 was directly involved in the regulation of beige adipocyte differentiation. The overexpression of Sirt1 impaired the p53/p21 pathway, thereby preventing elderly AT-MSCs from entering senescence and restoring the beige differentiation ability. Thus, our study represents the important role of Sirt1 and senescence in the regulation of beige adipocyte differentiation during aging.


Subject(s)
Adipocytes, Beige/cytology , Adipocytes, Beige/metabolism , Aging/metabolism , Cell Differentiation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Sirtuin 1/metabolism , Aged , Aged, 80 and over , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Humans , Infant , Infant, Newborn , Signal Transduction , Sirtuin 3/metabolism , Tissue Donors , Tumor Suppressor Protein p53/metabolism
20.
Cell Stem Cell ; 22(2): 262-276.e7, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29451855

ABSTRACT

Despite much work studying ex vivo multipotent stromal cells (MSCs), the identity and characteristics of MSCs in vivo are not well defined. Here, we generated a CD73-EGFP reporter mouse to address these questions and found EGFP+ MSCs in various organs. In vivo, EGFP+ mesenchymal cells were observed in fetal and adult bones at proliferative ossification sites, while in solid organs EGFP+ cells exhibited a perivascular distribution pattern. EGFP+ cells from the bone compartment could be clonally expanded ex vivo from single cells and displayed trilineage differentiation potential. Moreover, in the central bone marrow CD73-EGFP+ specifically labeled sinusoidal endothelial cells, thought to be a critical component of the hematopoietic stem cell niche. Purification and molecular characterization of this CD73-EGFP+ population revealed an endothelial subtype that also displays a mesenchymal signature, highlighting endothelial cell heterogeneity in the marrow. Thus, the CD73-EGFP mouse is a powerful tool for studying MSCs and sinusoidal endothelium.


Subject(s)
5'-Nucleotidase/metabolism , Bone Marrow Cells/metabolism , Endothelial Cells/metabolism , Multipotent Stem Cells/metabolism , Staining and Labeling , Stem Cell Niche , Animals , Bone Marrow/metabolism , Bone Marrow Cells/cytology , Chondrogenesis , Endothelial Cells/cytology , Female , Genes, Reporter , Green Fluorescent Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Multipotent Stem Cells/cytology , Organ Specificity , Stromal Cells/cytology , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...