Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 35(11): 3926-3936, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37602710

ABSTRACT

We encountered unexpected transgene silencing in Arabidopsis thaliana sperm cells; transgenes encoding proteins with no specific intracellular localization (cytoplasmic proteins) were silenced transcriptionally or posttranscriptionally. The mRNA of cytoplasmic protein transgenes tagged with a fluorescent protein gene was significantly reduced, resulting in undetectable fluorescent protein signals in the sperm cell. Silencing of the cytoplasmic protein transgenes in the sperm cell did not affect the expression of either its endogenous homologous genes or cotransformed transgenes encoding a protein with targeted intracellular localization. This transgene silencing in the sperm cell persisted in mutants of the major gene silencing machinery including DNA methylation. The incomprehensible, yet real, transgene silencing phenotypes occurring in the sperm cell could mislead the interpretation of experimental results in plant reproduction, and this Commentary calls attention to that risk and highlights details of this novel cytoplasmic protein transgene silencing.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Seeds/metabolism , Transgenes/genetics , Gene Silencing , DNA Methylation/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics
2.
Front Plant Sci ; 11: 871, 2020.
Article in English | MEDLINE | ID: mdl-32636867

ABSTRACT

Flowering plant zygotes possess complete developmental potency, and the mixture of male and female genetic and cytosolic materials in the zygote is a trigger to initiate embryo development. Plasmogamy, the fusion of the gamete cytoplasms, facilitates the cellular dynamics of the zygote. In the last decade, mutant analyses, live cell imaging-based observations, and direct observations of fertilized egg cells by in vitro fusion of isolated gametes have accelerated our understanding of the post-plasmogamic events in flowering plants including cell wall formation, gamete nuclear migration and fusion, and zygotic cell elongation and asymmetric division. Especially, it has become more evident that paternal parent-of-origin effects, via sperm cytoplasm contents, not only control canonical early zygotic development, but also activate a biparental signaling pathway critical for cell fate determination after the first cell division. Here, we summarize the plasmogamic paternal contributions via the entry of sperm contents during/after fertilization in flowering plants.

3.
Plant Cell Physiol ; 60(8): 1656-1665, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31076767

ABSTRACT

Karyogamy is a prerequisite event for plant embryogenesis, in which dynamic changes in nuclear architecture and the establishment of appropriate gene expression patterns must occur. However, the precise role of the male and female gametes in the progression of karyogamy still remains elusive. Here, we show that the sperm cell possesses the unique property to drive steady and swift nuclear fusion. When we fertilized egg cells with sperm cells in vitro, the immediate fusion of the male and female nuclei in the zygote progressed. This rapid nuclear fusion did not occur when two egg cells were artificially fused. However, the nuclear fusion of two egg nuclei could be accelerated by additional sperm entry or the exogenous application of calcium, suggesting that possible increase of cytosolic Ca2+ level via sperm entry into the egg cell efficiently can facilitate karyogamy. In contrast to zygotes, the egg-egg fusion cells failed to proliferate beyond an early developmental stage. Our transcriptional analyses also revealed the rapid activation of zygotic genes in zygotes, whereas there was no expression in fused cells without the male contribution. Thus, the male sperm cell has the ability to cause immediate karyogamy and to establish appropriate gene expression patterns in the zygote.


Subject(s)
Oryza/physiology , Seeds/physiology , Zygote/physiology , Fertilization/physiology
4.
J Exp Bot ; 69(10): 2609-2619, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29538694

ABSTRACT

Upon double fertilization, one sperm cell fuses with the egg cell to form a zygote with a 1:1 maternal-to-paternal genome ratio (1m:1p), and another sperm cell fuses with the central cell to form a triploid primary endosperm cell with a 2m:1p ratio, resulting in formation of the embryo and the endosperm, respectively. The endosperm is known to be considerably sensitive to the ratio of the parental genomes. However, the effect of an imbalance of the parental genomes on zygotic development and embryogenesis has not been well studied, because it is difficult to reproduce the parental genome-imbalanced situation in zygotes and to monitor the developmental profile of zygotes without external effects from the endosperm. In this study, we produced polyploid zygotes with an imbalanced parental genome ratio by electro-fusion of isolated rice gametes and observed their developmental profiles. Polyploid zygotes with an excess maternal gamete/genome developed normally, whereas approximately half to three-quarters of polyploid zygotes with a paternal excess showed developmental arrests. These results indicate that paternal and maternal genomes synergistically serve zygote development with distinct functions, and that genes with monoallelic expression play important roles during zygotic development and embryogenesis.


Subject(s)
Genome, Plant , Oryza/genetics , Polyploidy , Seeds/growth & development , Gene Expression Regulation, Plant , Oryza/growth & development , Oryza/metabolism , Seeds/genetics , Zygote/growth & development
5.
J Plant Res ; 130(3): 485-490, 2017 May.
Article in English | MEDLINE | ID: mdl-28275885

ABSTRACT

Fertilization is a general feature of eukaryotic uni- and multicellular organisms to restore a diploid genome from female and male gamete haploid genomes. In angiosperms, polyploidization is a common phenomenon, and polyploidy would have played a major role in the long-term diversification and evolutionary success of plants. As for the mechanism of formation of autotetraploid plants, the triploid-bridge pathway, crossing between triploid and diploid plants, is considered as a major pathway. For the emergence of triploid plants, fusion of an unreduced gamete with a reduced gamete is generally accepted. In addition, the possibility of polyspermy has been proposed for maize, wheat and some orchids, although it has been regarded as an uncommon mechanism of triploid formation. One of the reasons why polyspermy is regarded as uncommon is because it is difficult to reproduce the polyspermy situation in zygotes and to analyze the developmental profiles of polyspermic triploid zygotes. Recently, polyspermic rice zygotes were successfully produced by electric fusion of an egg cell with two sperm cells, and their developmental profiles were monitored. Two sperm nuclei and an egg nucleus fused into a zygotic nucleus in the polyspermic zygote, and the triploid zygote divided into a two-celled embryo via mitotic division with a typical bipolar microtubule spindle. The two-celled proembryos further developed and regenerated into triploid plants. These suggest that polyspermic plant zygotes have the potential to form triploid embryos, and that polyspermy in angiosperms might be a pathway for the formation of triploid plants.


Subject(s)
Fertilization/physiology , Magnoliopsida/physiology , Polyploidy , Seeds/growth & development , Zygote/growth & development , Animals , Cell Division/genetics , Cell Division/physiology , Cell Fusion , Cell Nucleus/physiology , Chromosome Segregation , Diploidy , Female , Male , Microtubules , Orchidaceae/cytology , Orchidaceae/embryology , Oryza/cytology , Oryza/embryology , Oryza/genetics , Plant Physiological Phenomena , Triploidy , Triticum/cytology , Triticum/embryology , Zea mays/cytology , Zea mays/embryology , Zygote/cytology , Zygote/physiology
6.
J Plant Res ; 130(2): 339-348, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27995374

ABSTRACT

Fertilization is comprised of two sequential fusion processes; plasmogamy and karyogamy. Karyogamy completes with migration and fusion of the male and female nuclei in the fused cell. In animals, microtubules organized by the centrosome control female/male pronuclei migration. In contrast, the nuclear migration in fused gametes of angiosperms is controlled by actin filaments, but the mechanism that regulates actin filament-dependent nuclear migration is not clear. In this study, we prepared fused rice (Oryza sativa L.) gametes/zygotes using in vitro fertilization and observed the spatial and temporal movements of actin filaments and sperm nuclei. Our results show that actin filaments in egg cells form a meshwork structure surrounding the nuclei. Quantitative analysis of the actin meshwork dynamics suggests that actin meshwork converges toward the egg nucleus. In egg cells fused with sperm cells, actin filaments appeared to interact with a portion of the sperm nuclear membrane. The velocity of the actin filaments was positively correlated with the velocity of the sperm nucleus during karyogamy. These results suggest that sperm nuclear membrane and actin filaments physically interact with each other during karyogamy, and that the sperm nucleus migrates toward the egg nucleus through the convergence of the actin meshwork. Interestingly, actin filament velocity increased promptly after gamete fusion and was further elevated during nuclear fusion. In addition to the migration of gamete nuclei, convergence of actin meshwork may also be critical during early zygotic developments.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Oryza/embryology , Plant Proteins/metabolism , Germ Cells, Plant/growth & development , Seeds/embryology
7.
Plant Physiol ; 171(1): 206-14, 2016 05.
Article in English | MEDLINE | ID: mdl-26945052

ABSTRACT

Fertilization is a general feature of eukaryotic uni- and multicellular organisms to restore a diploid genome from female and male gamete haploid genomes. In most animals and fucoid algae, polyspermy block occurs at the plasmogamy step. Because the polyspermy barrier in animals and in fucoid algae is incomplete, polyspermic zygotes are generated by multiple fertilization events. However, these polyspermic zygotes with extra centrioles from multiple sperms show aberrant nuclear and cell division. In angiosperms, polyspermy block functions in the egg cell and the central cell to promote faithful double fertilization, although the mechanism of polyspermy block remains unclear. In contrast to the case in animals and fucoid algae, polyspermic zygotes formed in angiosperms are not expected to die because angiosperms lack centrosomes. However, there have been no reports on the developmental profiles of polyspermic zygotes at cellular level in angiosperms. In this study, we produced polyspermic rice zygotes by electric fusion of an egg cell with two sperm cells, and monitored their developmental profiles. Two sperm nuclei and an egg nucleus fused into a zygotic nucleus, and the triploid zygote divided into a two-celled embryo via mitotic division with a typical bipolar microtubule spindle, as observed during mitosis of a diploid zygote. The two-celled proembryos further developed and regenerated into triploid plants. These findings suggest that polyspermic plant zygotes have the potential to form triploid embryos. Polyspermy in angiosperms might be a pathway for the formation of triploid plants, which can contribute significantly to the formation of autopolyploids.


Subject(s)
Fertilization/physiology , Oryza/cytology , Oryza/embryology , Oryza/genetics , Zygote/cytology , Zygote/growth & development , Cell Division , Cell Fusion/methods , Cell Nucleus/metabolism , Cell Nucleus Division/physiology , Chromatin/metabolism , Diploidy , Flow Cytometry , Microtubules/metabolism , Mitosis , Oryza/physiology , Seeds/embryology , Triploidy , Zygote/physiology
8.
Plant Signal Behav ; 10(2): e989021, 2015.
Article in English | MEDLINE | ID: mdl-25723729

ABSTRACT

In angiosperms, the fusion of a sperm cell with an egg cell, termed plasmogamy, triggers egg activation. Then, karyogamy, migration of the sperm nucleus toward the egg nucleus and their subsequent nuclear fusion, progresses, and de novo gene expression from the zygotic genome is initiated for early embryogenesis. Therefore, karyogamy is an important post-fusion event that bridges egg activation and de novo gene expression in fused gametes/zygotes. In this study, we monitored the progression of karyogamy in rice zygotes produced by in vitro fusion. The results indicated that the sperm nucleus migrated adjacent to the egg nucleus via an actin cytoskeleton, and the egg chromatin then appeared to move unidirectionally into the sperm nucleus through a possible nuclear connection. An enlargement of the sperm nucleus accompanied this possible chromatin remodeling. Then, 30-70 min after fusion, the sperm chromatin began to decondense, and karyogamy was completed. The development of early rice zygotes from plasmogamy to karyogamy could be divided into eight stages, and paternal and de novo synthesized transcripts were separately detectable in zygotes at early and late karyogamy stages, respectively, by RT-PCR using zygotes at each karyogamy stage.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , Gene Expression Regulation, Plant , Membrane Fusion , Oryza/genetics , Zygote/metabolism , Cell Polarity , Oryza/cytology , Oryza/metabolism , Ovum/cytology , Ovum/metabolism , Zygote/cytology
9.
Plant Physiol ; 165(4): 1533-1543, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24948834

ABSTRACT

In angiosperms, the conversion of an egg cell into a zygote involves two sequential gametic processes: plasmogamy, the fusion of the plasma membranes of male and female gametes, and karyogamy, the fusion of the gametic nuclei. In this study, the nuclei and nuclear membranes of rice (Oryza sativa) gametes were fluorescently labeled using histones 2B-green fluorescent protein/red fluorescent protein and Sad1/UNC-84-domain protein2-green fluorescent protein, respectively, which were heterologously expressed. These gametes were fused in vitro to produce zygotes, and the nuclei and nuclear membranes in the zygotes were observed during karyogamy. The results indicated that the sperm nucleus migrates adjacent to the egg nucleus 5 to 10 min after plasmogamy via an actin cytoskelton, and the egg chromatin then appears to move unidirectionally into the sperm nucleus through a possible nuclear connection. The enlargement of the sperm nucleus accompanies this possible chromatin remodeling. Then, 30 to 70 min after fusion, the sperm chromatin begins to decondense with the completion of karyogamy. Based on these observations, the development of early rice zygotes from plasmogamy to karyogamy was divided into eight stages, and using reverse transcription PCR analyses, paternal and de novo synthesized transcripts were separately detected in zygotes at early and late karyogamy stages, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...