Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35456854

ABSTRACT

Biogas plants have the great advantage that they produce electricity according to demand and can thus compensate for fluctuating production from weather-dependent sources such as wind power and photovoltaics. A prerequisite for flexible biogas plant operation is a suitable feeding strategy for an adjusted conversion of biomass into biogas. This research work is the first to demonstrate a practical, integrated model predictive control (MPC) for load-flexible, demand-orientated biogas production and the results show promising options for practical application on almost all full-scale biogas plants with no or only minor adjustments to the standardly existing measurement technology. Over an experimental period of 36 days, the biogas production of a full-scale plant was adjusted to the predicted electricity demand of a "real-world laboratory". Results with a mean absolute percentage error (MAPE) of less than 20% when comparing biogas demand and production were consistently obtained.

2.
Bioresour Technol ; 332: 125099, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33862386

ABSTRACT

This work studied the demand-oriented biogas production and the biogas storage in digestate by flexibly feeding a full-scale research biogas plant. The investigated continuous stirred tank reactor (CSTR) was equipped with a fast-moving submersible motor mixer and a slow-moving inclined shaft agitator. A model for the biogas storage in digestate was introduced and tested in full scale using temporally highly resolved volume flow measurements. An increase in mixing time led to a faster biogas production: A two to five hours reduction of the time to reach the maximum biogas production after feeding occurred in our experiments. However, no influence of the rheology and of the mixing regime on the methane yield could be derived from the measurements. Further, a 30% reduction of the stored biogas in the digestate occurred when the viscosity was lowered by 66%. This knowledge can be used to enhance the existing biogas formation models.


Subject(s)
Biofuels , Bioreactors , Anaerobiosis , Methane
SELECTION OF CITATIONS
SEARCH DETAIL
...