Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 126(3): 1116-28, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11457962

ABSTRACT

Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism.


Subject(s)
Chloroplasts/metabolism , Cholesterol Oxidase/metabolism , Nicotiana/metabolism , Plants, Toxic , Actinomyces/enzymology , Actinomyces/genetics , Animals , Cholesterol Oxidase/genetics , Coleoptera , Cytosol/metabolism , Insecticides/metabolism , Phenotype , Phytosterols/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Transport , Nicotiana/chemistry , Nicotiana/genetics , Nicotiana/parasitology
2.
Plant Mol Biol ; 38(5): 807-15, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9862498

ABSTRACT

The yeast C-8,7 sterol isomerase contains a polyvalent high-affinity drug binding site similar to mammalian sigma receptors. Exogenously supplied sigma ligands inhibit sterol biosynthesis in yeast, demonstrating a pharmacological relationship between sigma ligand-binding and C-8,7 sterol isomerase activity. We report the isolation of an Arabidopsis thaliana C-8,7 sterol isomerase by functional complementation of the corresponding sterol mutant in yeast and its characterization by exposure to sigma ligands. The yeast erg2 mutant, which lacks the C-8,7 sterol isomerase gene and activity, was transformed with an Arabidopsis cDNA yeast expression library. Transformed colonies were selected for restoration of C-8,7 sterol isomerase activity (i.e. wild-type ergosterol production) by enhanced resistance to the antibiotic cycloheximide. Sterols produced in complemented lines were characterized by gas chromatography-mass spectroscopy (GC-MS). The full-length A. thaliana cDNA (pA.t.SI1) that complemented the erg2 mutation contains an open reading frame encoding a 21 kDa protein that shares 68% similarity and 35% amino acid identity to the recently isolated mouse C-8,7 sterol isomerase. The sigma ligands, haloperidol, ifenprodil and verapamil inhibited the production of ergosterol in wild-type Saccharomyces cerevisiae and in the erg2 mutant complemented with pA.t.SI1. Structural and biochemical similarities between the A. thaliana C-8,7 sterol isomerase and the mammalian emopamil-binding protein (EBP) are discussed.


Subject(s)
Arabidopsis Proteins , Arabidopsis/enzymology , Arabidopsis/genetics , Steroid Isomerases/genetics , Amino Acid Sequence , Animals , Binding Sites , Carrier Proteins/metabolism , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , DNA, Plant/analysis , DNA, Plant/genetics , Genetic Complementation Test , Mice , Molecular Sequence Data , Open Reading Frames , Plants/enzymology , Plants/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Steroid Isomerases/metabolism
3.
J Chem Ecol ; 20(8): 2139-57, 1994 Aug.
Article in English | MEDLINE | ID: mdl-24242736

ABSTRACT

Leaf damage by herbivores inNicotiana sylvestris Spegazzini and Comes (Solanaceae) produces a damage signal that dramatically increasesde novo nicotine synthesis in the roots. The increased synthesis leads to increases in whole-plant nicotine pools, which in turn make plants more resistant to further herbivore attack. Because signal production and the response to the signal occur in widely separated tissues, the speed with which different damage signals exit a damaged leaf can be studied. We propose that electrical damage signals should exit a leaf faster (less than 60 min) than chemical damage signals. Excision of a leaf induces a smaller increase in nicotine production than does puncture damage, so we examined our proposition by excising previously punctured leaves at 1, 60, and 960 min after leaf puncture and quantifying the induced whole-plant nicotine pools six days later when the induced nicotine production had reached a maximum. Significant induced nicotine production occurred only if punctured leaves were excised more than 1 hr after puncture, which is consistent with the characteristics of a slow-moving chemical signal rather than a fast-moving electrical signal. We explore the nature of the chemical signal and demonstrate that additions of 90µg or more of methyl jasmonate (MJ) in an aqueous solution to the roots of hydroponically grown plants inducede novo nicotine synthesis from(15)NO3 in a manner similar to that induced by leaf damage. We examine the hypothesis that jasmonic acid (JA) functions in the transfer of the damage signal from shoot to root. Using GC-MS techniques to quantify whole-plant JA pools, we demonstrate that leaf damage rapidly (<0.5 hr) increases shoot JA pools and, more slowly (<2 hr), root JA pools. JA levels subsequently decay to levels found in undamaged plants within 24 hr and 10 hr for shoots and roots, respectively. The addition of sufficient quantities (186µg) of MJ in a lanolin paste to leaves from hydroponically grown plants significantly increased endogenous root JA pools and increasedde novo nicotine synthesis in these plants. However, the addition of 93µg or less of MJ did not significantly increase endogenous root JA pools and did not significantly affectde novo nicotine synthesis. We propose that wounding increases shoot JA pools, which either directly through transport or indirectly through a systemin-like signal increase root JA pools, which, in turn, stimulate root nicotine synthesis and increase whole-plant nicotine pools.

4.
J Chem Ecol ; 19(6): 1143-53, 1993 Jun.
Article in English | MEDLINE | ID: mdl-24249133

ABSTRACT

We performed field tests of alkaloid induction inNicotiana attenuata plants growing in southwestern Utah with mimicry of the two major types of damage inflicted by invertebrate and vertebrate herbivores: leaf damage and stalk removal, respectively. In undamaged plants, seasonal increases in leaf nicotine content occurred at a rate of 0.046% leaf dry mass/day. Leaf damage doubled the accumulation rate to 0.086-0.138% leaf dry mass/day, while stalk removal resulted in a quadrupling of the accumulation rate to 0.206% leaf dry mass/day. These damage-induced increases in nicotine accumulation are significantly larger than between-plant and phenological variations. Leaf damage to the nornicotine-(N. repanda andN. trigonophylla) and anabasine-accumulating (N. glauca)Nicotiana species native to North America resulted in 1.5- to 5-fold increases in their principal leaf alkaloid pools. We conclude that alkaloid induction is not limited to nicotine-accumulatingNicotiana species and that herbivores feeding on previously damaged plants are likely to encounter tissues with alkaloid titers significantly higher than those of undamaged plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...