Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Infect Public Health ; 17(6): 1065-1078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705059

ABSTRACT

We meta-analyzed the diagnostic accuracy of rapid diagnostic tests (dipsticks) and loop-mediated isothermal amplification (LAMP) method to detect Shigella species. We searched MEDLINE, Embase, Web of Science and Google Scholar from inception to 2023 for studies reporting on the performance of Shigella dipstick and LAMP tests compared with culture or polymerase chain reaction (PCR). Our search identified 2618 studies, of which fourteen met the inclusion criteria for the systematic review. Ten studies covering 4056 tests (from twelve countries) were included in the meta-analysis. The overall pooled sensitivity and specificity were 98% (95% CI: 94-100) and 97% (95% CI: 92-99), respectively. Pooled sensitivity and specificity of dipsticks were 95% and 98%, respectively. In contrast, LAMP showed higher pooled sensitivity (100%) and diagnostic odds ratio (431752), but similar specificity (97%). LAMP and dipstick tests exhibited promising performance, suggesting that they could be useful for assisting in the diagnosis of shigellosis.


Subject(s)
Dysentery, Bacillary , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Shigella , Humans , Nucleic Acid Amplification Techniques/methods , Shigella/isolation & purification , Shigella/genetics , Dysentery, Bacillary/diagnosis , Dysentery, Bacillary/microbiology , Molecular Diagnostic Techniques/methods , Diagnostic Tests, Routine/methods , Rapid Diagnostic Tests
2.
Int J Infect Dis ; 141: 106955, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311027

ABSTRACT

OBJECTIVES: South Asia remains home to foodborne diseases caused by the Vibrio species. We aimed to compile and update information on the epidemiology of vibriosis in South Asia. METHODS: For this systematic review and meta-analysis, we searched PubMed, Web of Science, EMBASE, and Google Scholar for studies related to vibriosis in South Asia published up to May 2023. A random-effects meta-analysis was used to estimate the pooled isolation rate of non-cholera-causing Vibrio species. RESULTS: In total, 38 studies were included. Seven of these were case reports and 22 were included in the meta-analysis. The reported vibriosis cases were caused by non-O1/non-O139 V. cholerae, V. parahaemolyticus, V. fluvialis, and V. vulnificus. The overall pooled isolation rate was 4.0% (95% confidence interval [CI] 3.0-5.0%) in patients with diarrhea. Heterogeneity was high (I2 = 98.0%). The isolation rate of non-O1/non-O139 V. cholerae, V. parahaemolyticus, and V. fluvialis were 9.0 (95% CI 7.0-10.0%), 1.0 (95% CI 1.0-2.0%), and 2.0 (95% CI: 1.0-3.0%), respectively. Regarding V. parahaemolyticus, O3:K6 was the most frequently isolated serotype. Cases peaked during summer. Several studies reported antibiotic-resistant strains and those harboring extended-spectrum beta-lactamases genes. CONCLUSIONS: This study demonstrates a high burden of infections caused by non-cholera-causing Vibrio species in South Asia.


Subject(s)
Foodborne Diseases , Vibrio Infections , Vibrio cholerae , Humans , Vibrio cholerae/genetics , Vibrio Infections/epidemiology , Foodborne Diseases/epidemiology , Diarrhea/epidemiology , Asia, Southern
3.
Travel Med Infect Dis ; 57: 102685, 2024.
Article in English | MEDLINE | ID: mdl-38181864

ABSTRACT

BACKGROUND: Ebola virus disease (Ebola) is highly pathogenic, transmissible, and often deadly, with debilitating consequences. Superspreading within a cluster is also possible. In this study, we aim to document Ebola basic reproduction number (R0): the average number of new cases associated with an Ebola case in a completely susceptible population. METHODS: We undertook a systematic review and meta-analysis. We searched PubMed, EMBASE, and Web of Science for studies published between 1976 and February 27, 2023. We also manually searched the reference lists of the reviewed studies to identify additional studies. We included studies that reported R0 during Ebola outbreaks in Africa. We excluded studies that reported only the effective reproduction number (Rt). Abstracting data from included studies was performed using a pilot-tested standard form. Two investigators reviewed the studies, extracted the data, and assessed quality. The pooled R0 was determined by a random-effects meta-analysis. R0 was stratified by country. We also estimated the theoretically required immunization coverage to reach herd-immunity using the formula of (1-1/R0) × 100 %. RESULTS: The search yielded 2042 studies. We included 53 studies from six African countries in the systematic review providing 97 Ebola mean R0 estimates. 27 (with 46 data points) studies were included in the meta-analysis. The overall pooled mean Ebola R0 was 1.95 (95 % CI 1.74-2.15), with high heterogeneity (I2 = 99.99 %; τ2 = 0.38; and p < 0.001) and evidence of small-study effects (Egger's statistics: Z = 4.67; p < 0.001). Mean Ebola R0 values ranged from 1.2 to 10.0 in Nigeria, 1.1 to 7 in Guinea, 1.14 to 8.33 in Sierra Leone, 1.13 to 5 in Liberia, 1.2 to 5.2 in DR Congo, 1.34 to 2.7 in Uganda, and from 1.40 to 2.55 for all West African countries combined. Pooled mean Ebola R0 was 9.38 (95 % CI 4.16-14.59) in Nigeria, 3.31 (95 % CI 2.30-4.32) in DR Congo, 2.0 (95 % CI 1.25-2.76) in Uganda, 1.83 (95 % CI 1.61-2.05) in Liberia, 1.73 (95 % CI 1.47-2.0) in Sierra Leonne, and 1.44 (95 % CI 1.29-1.60) in Guinea. In theory, 50 % of the population needs to be vaccinated to achieve herd immunity, assuming that Ebola vaccine would be 100 % effective. CONCLUSIONS: Ebola R0 varies widely across countries. Ebola has a much wider R0 range than is often claimed (1.3-2.0). It is possible for an Ebola index case to infect more than two susceptible individuals.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Basic Reproduction Number , Disease Outbreaks/prevention & control , Liberia/epidemiology , Nigeria
4.
Microbiol Resour Announc ; 12(12): e0070723, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37943041

ABSTRACT

We isolated a Vibrio fluvialis strain (IDH5335) from a stool sample collected from a patient with diarrhea. In this announcement, we report the complete genomic sequence of this organism, which was obtained by combining Illumina and Oxford Nanopore sequencing data.

5.
Arch Microbiol ; 205(10): 346, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773547

ABSTRACT

Strain KK2020170T, a Gram-stain negative, yellow colony-forming bacterium, was isolated from surface seawater sampled in Kojima Bay, Okayama, Japan. Phylogenetic analysis based on the 16S rRNA gene revealed that strain KK2020170T belongs to the genus Flavobacterium, with Flavobacterium haoranii LQY-7T (98.1% similarity) being its closest relative, followed by Flavobacterium sediminis MEBiC07310T (96.9%) and Flavobacterium urocaniciphilum YIT 12746T (96.0%). Whole-genome shotgun sequencing showed that strain KK2020170T, when paralleled with F. haoranii LQY-7 T, had 81.3% average nucleotide identity, and 24.6% in silico DNA-DNA hybridization values, respectively. The DNA G + C content of strain KK2020170T was 31.1 mol%. The most abundant fatty acids (> 10%) of strain KK2020170T were iso-C15: 0, iso-C17: 0 3-OH and iso-C15: 1 G. The dominant respiratory quinone of the strain was menaquinone MK-6. Based on the phylogenetic and phenotypic analysis results, we propose that strain KK2020170T represents a novel species, for which the name Flavobacterium okayamense sp. nov. has been proposed. The type strain is KK2020170T (= ATCC TSD-280 T = NBRC 115344 T).


Subject(s)
Flavobacterium , Seawater , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , Seawater/microbiology , Fatty Acids/analysis , Vitamin K 2
6.
Travel Med Infect Dis ; 52: 102554, 2023.
Article in English | MEDLINE | ID: mdl-36792021

ABSTRACT

BACKGROUND: Southeast Asia is attractive for tourism. Unfortunately, travelers to this region are at risk of becoming infected with Shigella. We conducted a meta-analysis to provide updates on Shigella prevalence in Southeast Asia, along with their serogroups and serotypes. METHODS: We conducted a systematic search using PubMed, EMBASE, and Web of Science for peer-reviewed studies from 2000 to November 2022. We selected studies that detected Shigella in stools by culture or polymerase chain reaction (PCR). Two reviewers extracted the data using a standardized form and performed quality assessments using the Joanna Briggs Institute checklist. The random effects model was used to estimate the pooled prevalence of Shigella. RESULTS: During our search, we identified 4376 studies. 29 studies (from six Southeast Asian countries) were included in the systematic review, 21 each in the meta-analysis of the prevalence of Shigella (Sample size: 109545) and the prevalence of Shigella serogroups. The pooled prevalence of Shigella was 4% (95% CI: 4-5%) among diarrhea cases. Shigella sonnei was the most abundant serogroup in Thailand (74%) and Vietnam (57%), whereas Shigella flexneri was dominant in Indonesia (72%) and Cambodia (71%). Shigella dysenteriae and Shigella boydii were uncommon (pooled prevalence of 1% each). The pooled prevalence of Shigella was 5% (95% CI: 4-6%) in children aged <5 years. The pooled prevalence showed a decreasing trend comparing data collected between 2000-2013 (5%; 95% CI: 4-6%) and between 2014-2022 (3%; 95% CI: 2-4%). Shigella prevalence was 6% in studies that included participants with mixed pathogens versus 3% in those without. Shigella flexneri serotype 2a was the most frequently isolated (33%), followed by 3a (21%), 1b (10%), 2b (3%), and 6 (3%). CONCLUSIONS: This study provides compelling evidence for the development of effective Shigella vaccines for residents of endemic regions and travellers to these areas.


Subject(s)
Dysentery, Bacillary , Shigella , Child , Humans , Dysentery, Bacillary/epidemiology , Shigella dysenteriae , Shigella flexneri , Indonesia
7.
J Travel Med ; 30(1)2023 02 18.
Article in English | MEDLINE | ID: mdl-36331282

ABSTRACT

BACKGROUND: Shigella remains one of the most common causes of diarrhoea in South Asia. Current estimates of the prevalence of Shigella are critical for guiding control measures. We estimated the prevalence of Shigella species and serogroups in South Asia. METHODS: We performed a systematic review using PubMed, EMBASE, Google Scholar and Web of Science for peer-reviewed studies published between 2000 and 19 June 2022. We also manually searched the reference lists of the reviewed studies to identify additional studies. We included studies that detected the presence of Shigella in stool by culture or polymerase chain reaction (PCR). Studies associated with outbreaks were excluded. Two investigators independently reviewed the studies, extracted the data and performed quality assessment. A random-effects meta-analysis was performed to determine the pooled prevalence of Shigella. RESULTS: Our search yielded 5707 studies, of which 91 studies from five South Asian countries were included in the systematic review, 79 in the meta-analysis of Shigella prevalence and 63 in the meta-analysis of Shigella serogroups prevalence. The pooled prevalence of Shigella was 7% [95% confidence interval (CI): 6-7%], with heterogeneity (I2 = 98.7; P < 0.01). The prevalence of Shigella was higher in children aged <5 years (10%; 95% CI: 8-11%), in rural areas (12%; 95% CI: 10-14%) and in studies using PCR (15%; 95% CI: 11-19%). Shigella flexneri (58%) was the most abundant serogroup, followed by Shigella sonnei (19%), Shigella boydii (10%) and Shigella dysenteriae (9%). Shigella flexneri 2a was the most frequently isolated serotype (36%), followed by serotype 3a (12%), serotype 6 (12%) and serotype 1b (6%). The prevalence of non-typeable Shigella was 10.0%. CONCLUSIONS: Although the prevalence of Shigella in South Asia remains generally high, it varies by age group and geographical area, with data lacking in some countries. Effective Shigella vaccines would be advantageous for both endemic communities and travellers.


Subject(s)
Dysentery, Bacillary , Shigella , Child , Humans , Asia, Southern , Dysentery, Bacillary/epidemiology , Shigella dysenteriae , Shigella flexneri
8.
Trop Dis Travel Med Vaccines ; 8(1): 22, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36180932

ABSTRACT

BACKGROUND: India is an attractive destination for travelers. Unfortunately, numerous reports exist on traveler's diarrhea (TD) and fecal colonization with extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) among international travelers visiting India. Here, we systematically reviewed studies published on the acquisition of ESBL-EC and TD attack rates among international visitors to India. METHODS: Design: Systematic review and meta-analysis. A systematic search was performed using Google Scholar, PubMed, EMBASE, Web of Science, and gray literature from 2000 to December 2021, for studies containing data for ESBL-EC acquisition or TD experience related to a trip to India. Random effects models were used to compute the prevalence of ESBL-EC acquisition and TD attack. RESULTS: The literature search yielded a total of 5023 records. Of these, 31 met our inclusion criteria for systematic review and only 17 could be meta-analyzed (9 for TD, and 8 for ESBL-EC). The overall pooled attack rate of TD was 39% (95% confidence interval, CI: 25-53%). In studies where travelers' memory was used to diagnose TD, the pooled attack rate of TD was slightly higher (42%, 95% CI: 21-64%) compared to those where TD was objectively documented (33%, 95% CI: 17-49%). There were significant risks to be colonized with ESBL-EC among the travelers who experienced TD. The pooled rate of ESBL-EC colonization was 72% (CI: 67-78%). Most ESBL-EC produced CTX-M-15 enzyme. Furthermore, most of the travelers who acquired ESBL-EC were from highly industrialized countries recruited from travel clinics: Canada (n = 80), Germany (n = 69), Netherlands (n = 20), Sweden (n = 18), Japan (n = 10), Finland (n = 8), USA (n = 7), Spain (n = 5), and Denmark (n = 3). CONCLUSIONS: TD pooled attack rate and ESBL-EC acquisition among international travelers visiting India were high in this study. However, we cannot make generalizations based upon this TD pooled attack rate for the current situation, due to a lack of current data. Our study highlights that travelers should be advised on TD to ensure that they do not disregard the risk of contracting TD and be better prepared as a result. It also illustrates the importance of international travel in acquiring antibiotic-resistant Escherichia coli.

9.
Bull World Health Organ ; 100(7): 447-458, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35813519

ABSTRACT

Objective: To evaluate the clinical accuracy of rapid diagnostic tests for the detection of Ebola virus. Methods: We searched MEDLINE®, Embase® and Web of Science for articles published between 1976 and October 2021 reporting on clinical studies assessing the performance of Ebola virus rapid diagnostic tests compared with reverse transcription polymerase chain reaction (RT-PCR). We assessed study quality using the QUADAS-2 criteria. To estimate the pooled sensitivity and specificity of these rapid diagnostic tests, we used a bivariate random-effects meta-analysis. Findings: Our search identified 113 unique studies, of which nine met the inclusion criteria. The studies were conducted in the Democratic Republic of the Congo, Guinea, Liberia and Sierra Leone and they evaluated 12 rapid diagnostic tests. We included eight studies in the meta-analysis. The pooled sensitivity and specificity of the rapid tests were 86% (95% confidence interval, CI: 80-91) and 95% (95% CI: 91-97), respectively. However, pooled sensitivity decreased to 83% (95% CI: 77-88) after removing outliers. Pooled sensitivity increased to 90% (95% CI: 82-94) when analysis was restricted to studies using the RT-PCR from altona Diagnostics as gold standard. Pooled sensitivity increased to 99% (95% CI: 67-100) when the analysis was restricted to studies using whole or capillary blood specimens. Conclusion: The included rapid diagnostic tests did not detect all the Ebola virus disease cases. While the sensitivity and specificity of these tests are moderate, they are still valuable tools, especially useful for triage and detecting Ebola virus in remote areas.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Diagnostic Tests, Routine , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/diagnosis , Humans , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
10.
Article in English | MEDLINE | ID: mdl-35742404

ABSTRACT

BACKGROUND: Approximately 2.9 million people worldwide suffer from cholera each year, many of whom are destitute. However, understanding of immunity against cholera is still limited. Several studies have reported the duration of antibodies following cholera; however, systematic reviews including a quantitative synthesis are lacking. OBJECTIVE: To meta-analyze cohort studies that have evaluated vibriocidal, cholera toxin B subunit (CTB), and lipopolysaccharide (LPS) antibody levels following a clinical cholera case. METHODS: Design: Systematic review and meta-analysis. We searched PubMed and Web of science for studies assessing antibodies against Vibrio cholerae in cohorts of patients with clinical cholera. Two authors independently extracted data and assessed the quality of included studies. Random effects models were used to pool antibody titers in adults and older children (aged ≥ 6 years). In sensitivity analysis, studies reporting data on young children (2-5 years) were included. RESULTS: Nine studies met our inclusion criteria for systematic review and seven for meta-analysis. The pooled mean of vibriocidal antibody titers in adults and older children (aged ≥ 6 years) was 123 on day 2 post-symptom onset, which sharply increased on day 7 (pooled mean = 6956) and gradually waned to 2247 on day 30, 578 on day 90, and 177 on day 360. Anti-CTB IgA antibodies also peaked on day 7 (pooled mean = 49), followed by a rapid decrease on day 30 (pooled mean = 21), and further declined on day 90 (pooled mean = 10), after which it plateaued from day 180 (pooled mean = 8) to 360 (pooled mean = 6). Similarly, anti-CTB IgG antibodies peaked in early convalescence between days 7 (pooled mean = 65) and 30 (pooled mean = 69), then gradually waned on days 90 (pooled mean = 42) and 180 (pooled mean = 30) and returned to baseline on day 360 (pooled mean = 24). Anti-LPS IgA antibodies peaked on day 7 (pooled mean = 124), gradually declined on day 30 (pooled mean = 44), which persisted until day 360 (pooled mean = 10). Anti LPS IgG antibodies peaked on day 7 (pooled mean = 94). Thereafter, they decreased on day 30 (pooled mean = 85), and dropped further on days 90 (pooled mean = 51) and 180 (pooled mean = 47), and returned to baseline on day 360 (pooled mean = 32). Sensitivity analysis including data from young children (aged 2-5 years) showed very similar findings as in the primary analysis. CONCLUSIONS: This study confirms that serological antibody (vibriocidal, CTB, and LPS) titers return to baseline levels within 1 year following clinical cholera, i.e., before the protective immunity against subsequent cholera wanes. However, this decay should not be interpreted as waning immunity because immunity conferred by cholera against subsequent disease lasts 3-10 years. Our study provides evidence for surveillance strategies and future research on vaccines and also demonstrates the need for further studies to improve our understanding of immunity against cholera.


Subject(s)
Cholera , Vibrio cholerae O1 , Adolescent , Adult , Antibodies, Bacterial , B-Lymphocytes , Child , Child, Preschool , Cholera/epidemiology , Humans , Immunoglobulin A , Immunoglobulin G , Immunologic Memory , Kinetics , Lipopolysaccharides
11.
Article in English | MEDLINE | ID: mdl-35565133

ABSTRACT

Fecal contamination of water sources and open defecation have been linked to cholera outbreaks in India. However, a systematic review on the drivers responsible for these outbreaks has yet to be published. Here, we systematically review the published literature on cholera outbreaks in India between 2011 and 2020. We searched studies in English in three databases (MEDLINE, EMBASE, and Web of Science) and the Integrated Disease Surveillance Program that tracks cholera outbreaks throughout India. Two authors independently extracted data and assessed the quality of the included studies. Quantitative data on the modes of transmission reviewed in this study were assessed for any change over time between 2011-2015 and 2016-2020. Our search retrieved 10823 records initially, out of which 81 full-text studies were assessed for eligibility. Among these 81 studies, 20 were eligible for inclusion in this review. There were 565 reported outbreaks between 2011 and 2020 that led to 45,759 cases and 263 deaths. Outbreaks occurred throughout the year; however, they exploded with monsoons (June through September). In Tamil Nadu, a typical peak of cholera outbreaks was observed from December to January. Seventy-two percent (33,089/45,759) of outbreak-related cases were reported in five states, namely Maharashtra, West Bengal, Punjab, Karnataka, and Madhya Pradesh. Analysis of these outbreaks highlighted the main drivers of cholera including contaminated drinking water and food, inadequate sanitation and hygiene (including open defecation), and direct contact between households. The comparison between 2011-2015 and 2016-2020 showed a decreasing trend in the outbreaks that arose due to damaged water pipelines. Many Indians still struggle with open defecation, sanitation, and clean water access. These issues should be addressed critically. In addition, it is essential to interrupt cholera short-cycle transmission (mediated by households, stored drinking water and foodstuffs) during an outbreak. As cholera is associated with deprivation, socio-economic development is the only long-term solution.


Subject(s)
Cholera , Drinking Water , Cholera/epidemiology , Disease Outbreaks , Humans , India/epidemiology , Sanitation
12.
J Vet Med Sci ; 84(3): 310-318, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35046240

ABSTRACT

The purpose of this study was to determine the concentrations of antimicrobial components (immunoglobulin A (IgA), lactoferrin (LF), lingual antimicrobial peptide (LAP), and S100A7) in normal milk and their relation to host factors (Age, somatic cell count (SCC), days in milk, richness, and alpha diversity of the milk microbiota) in dairy cows using multivariate regression tree analyses, and to clarify how the milk microbiota is related to the obtained results. Thirty normal milk samples were collected from a commercial dairy farm in June 2020. The thresholds that predicted the concentration of each antimicrobial component in milk were obtained by regression tree analysis, and the beta-diversity of the milk microbiota composition between groups divided according to each threshold was compared by an analysis of similarities test. The IgA and LF concentrations were mainly predicted by the SCC (177,500 and 70,000 cells/ml, respectively), and the LAP and S100A7 concentrations were predicted by Age (29.667 and 40.3 months, respectively). No relationship was observed between the concentration of IgA, LAP, or S100A7 and the milk microbiota composition between the groups divided by the threshold for prediction, but the milk microbiota composition was significantly different between the groups divided by the threshold for predicting the LF concentration. Our results indicated that the LF concentration in normal milk may be associated with the milk microbiota composition.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Microbiota , Animals , Anti-Bacterial Agents , Cattle , Cell Count/veterinary , Female , Immunoglobulin A/analysis , Lactation , Milk/chemistry
14.
Diagnostics (Basel) ; 11(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34829444

ABSTRACT

The rapid diagnosis of cholera contributes to adequate outbreak management. This meta-analysis assesses the diagnostic accuracy of cholera rapid tests (RDTs) to detect Vibrio cholerae O1. METHODS: Systematic review and meta-analysis. We searched four databases (Medline, EMBASE, Google Scholar, and Web of Science up to 8 September 2021) for studies that evaluated cholera RDTs for the detection of V. cholerae O1 compared with either stool culture or polymerase chain reaction (PCR). We assessed the studies' quality using the QUADAS-2 criteria. In addition, in this update, GRADE approach was used to rate the overall certainty of the evidence. We performed a bivariate random-effects meta-analysis to calculate the pooled sensitivity and specificity of cholera RDTs. RESULTS: Overall, 20 studies were included in this meta-analysis. Studies were from Africa (n = 11), Asia (n = 7), and America (Haiti; n = 2). They evaluated eight RDTs (Crystal VC-O1, Crystal VC, Cholkit, Institut Pasteur cholera dipstick, SD Bioline, Artron, Cholera Smart O1, and Smart II Cholera O1). Using direct specimen testing, sensitivity and specificity of RDTs were 90% (95% CI, 86 to 93) and 86% (95% CI, 81 to 90), respectively. Cholera Sensitivity was higher in studies conducted in Africa [92% (95% CI, 89 to 94)] compared with Asia [82% (95% CI, 77 to 87)]. However, specificity [83% (95% CI, 71 to 91)] was lower in Africa compared with Asia [90% (95% CI, 84 to 94)]. GRADE quality of evidence was estimated as moderate. CONCLUSIONS: Against culture or PCR, current cholera RDTs have moderate sensitivity and specificity for detecting Vibrio cholerae O1.

15.
J Vet Med Sci ; 83(11): 1620-1627, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34526421

ABSTRACT

The aim of this study was to evaluate the microbiota of normal milk in dairy cows and their relationship with host factors, such as the age of the cow (Age), somatic cell counts in milk (SCCs), and days in milk (DIM). We investigated 48 milk samples from 22 cows with no systemic or local clinical signs using MinIONTM nanopore sequencing for a 16S rRNA gene amplicon. Bacterial richness was positively correlated with the DIM (P=0.043), and both the Shannon-Wiener Index and Simpson's Index, which are metrics of alpha-diversity, were also significantly positively correlated with the SCC (P<0.001). The composition ratios of both Actinobacteria at the phylum level and Kocuria spp. at the genus level in the milk microbiota were significantly correlated with the SCC (P<0.001 and P<0.001, respectively). In the beta-diversity test, the one-way analysis of similarities test showed a significant difference (P=0.0051) between the low- and high-SCC groups. This study clarified that the composition of the normal milk microbiota in this herd was related to the SCC. It also raised the possibility of variations in bacterial genera in the normal milk microbiota between the low- and high-SCC groups. However, to clarify the actual condition of the milk microbiota and to elucidate the relationship with the SCC, it is necessary to perform further analyses taking into account not only the relative abundance, but also the absolute abundance of microbes.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Microbiota , Nanopore Sequencing , Animals , Cattle , Cell Count/veterinary , Female , Lactation , Milk , Nanopore Sequencing/veterinary , RNA, Ribosomal, 16S/genetics
16.
Sci Rep ; 11(1): 3436, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33564026

ABSTRACT

Spread of drug-resistant bacteria is a serious problem worldwide. We thus designed a new sequence-based protocol that can quickly identify bacterial compositions of clinical samples and their drug-resistance profiles simultaneously. Here we utilized propidium monoazide (PMA) that prohibits DNA amplifications from dead bacteria, and subjected the original and antibiotics-treated samples to 16S rRNA metagenome sequencing. We tested our protocol on bacterial mixtures, and observed that sequencing reads derived from drug-resistant bacteria were significantly increased compared with those from drug-sensitive bacteria when samples were treated by antibiotics. Our protocol is scalable and will be useful for quickly profiling drug-resistant bacteria.


Subject(s)
Bacteria/genetics , Coloring Agents/chemistry , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Nanopores , Sequence Analysis, DNA , Metagenome , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
17.
J Hum Genet ; 65(1): 21-24, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31649301

ABSTRACT

Short tandem repeats (STRs) are repetitive DNA sequences that are highly polymorphic and widely used for personal identification in the field of forensic medicine. The standard method for determining the repeat number of STRs is capillary electrophoresis of PCR products; however, the use of DNA sequencing has increased because it can identify same-sized alleles with nucleotide substitutions (iso-alleles). In this study, we performed human STR genotyping using a portable nanopore-based DNA sequencer, the MinION, and evaluated its performance. Because the sequence quality obtained by MinION is considerably lower than those obtained with other DNA sequencers, we developed an original scoring scheme for judging the genotypes from MinION reads. Analysis of seven human samples for 21-45 STR loci yielded an average of 857 thousand reads per sample, and the accuracy of genotyping and iso-allele identification reached 75.7% and 82%, respectively. Although the accuracy is higher than that reported previously, further improvements are required before this method can be practically applied.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats/genetics , Nanopore Sequencing/methods , Sequence Analysis, DNA/methods , Alleles , Female , Genotyping Techniques/instrumentation , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/instrumentation , Humans , Male , Nanopore Sequencing/instrumentation , Pilot Projects , Sequence Analysis, DNA/instrumentation
18.
Clin Transl Immunology ; 8(11): e01087, 2019.
Article in English | MEDLINE | ID: mdl-31709051

ABSTRACT

OBJECTIVES: We have developed a portable system for the rapid determination of bacterial composition for the diagnosis of infectious diseases. Our system comprises of a nanopore technology-based sequencer, MinION, and two laptop computers. To examine the accuracy and time efficiency of our system, we provided a proof-of-concept for the detection of the causative bacteria of 11 meningitis patients in Zambia. METHODS: We extracted DNA from cerebrospinal fluid samples of each patient and amplified the 16S rRNA gene regions. The sequencing library was prepared, and the sequenced reads were simultaneously processed for bacterial composition determination using the minimap2 software and the representative prokaryote genomes. RESULTS: The sequencing results of four of the six culture-positive samples were consistent with those of conventional culture-based methods. The dominant bacterial species in each of these samples were identified from the sequencing data within only 3 min. Although the major bacterial species were also detected from the other two culture-positive samples and five culture-negative samples, their presence could not be confirmed. Moreover, as a whole, although the number of sequencing reads obtained within a short sequencing run was small, there was no change in the major bacterial species over time with prolonged sequencing. In addition, the processing time strongly correlated with the number of sequencing reads used for the analysis. CONCLUSION: Our results suggest that time-effective analysis could be achieved by determining the number of sequencing reads required for the rapid diagnosis of infectious bacterial species depending on the complexity of bacterial species in a sample.

19.
Retrovirology ; 16(1): 14, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31096993

ABSTRACT

Bovine leukemia virus (BLV) causes enzootic bovine leukosis and is closely related to the human T-lymphotropic virus. Bovine major histocompatibility complex (BoLAs) are used extensively as markers of disease and immunological traits in cattle. For BLV diagnosis, proviral load is a major diagnosis index for the determination of disease progression and transmission risk. Therefore, we investigated the frequency of BoLA-DRB3 alleles, BoLA-DQA1 alleles, and haplotypes of BoLA class II isolated from the heads of 910 BLV-infected cows out of 1290 cows assessed from BLV-positive farms, in a nationwide survey from 2011 to 2014 in Japan. Our aim was to identify BoLA class II polymorphisms associated with the BLV proviral load in the Holstein cow. The study examined 569 cows with a high proviral load and 341 cows with a low proviral load. Using the highest odds ratio (OR) as a comparison index, we confirmed that BoLA-DRB3 was the best marker for determining which cow spread the BLV (OR 13.9 for BoLA-DRB3, OR 11.5 for BoLA-DQA1, and OR 6.2 for BoLA class II haplotype). In addition, DRB3*002:01, *009:02, *012:01, *014:01, and *015:01 were determined as BLV provirus associated alleles. BoLA-DRB3*002:01, *009:02, and *014:01 were determined as resistant alleles (OR > 1), and BoLA-DRB3*012:01 and *015:01 were determined as susceptible alleles (OR < 1). In this study, we showed that BoLA-DRB3 was a good marker for determining which cow spread BLV, and we found not only one resistant allele (BoLA-DRB3*009:02), but also two other disease-resistant alleles and two disease-susceptible alleles. This designation of major alleles as markers of susceptibility or resistance can allow the determination of the susceptibility or resistance of most cows to disease. Overall, the results of this study may be useful in eliminating BLV from farms without having to separate cows into several cowsheds.


Subject(s)
Histocompatibility Antigens Class II/genetics , Leukemia Virus, Bovine , Polymorphism, Genetic , Proviruses , Viral Load , Alleles , Animals , Cattle , Disease Resistance/genetics , Female , Genetic Predisposition to Disease , Haplotypes , Japan , Phenotype
20.
Viral Immunol ; 30(7): 500-507, 2017 09.
Article in English | MEDLINE | ID: mdl-28598267

ABSTRACT

Intravenous immunoglobulin (IVIG) is used to treat or prevent severe viral infection, especially cytomegalovirus (CMV) infections. IVIG was characterized to understand its interaction with CMV-infected cells. IVIG retarded CMV spread and reduced virus yields depending on the neutralizing (NT) antibody titer. Immediate early protein synthesis was reduced by IVIG in 3 to 15 h, and IVIG specifically reduced the ratio of 66/68k protein synthesis among immediate early proteins in an NT antibody-dependent manner between 4 and 8 h after infection, indicating that antigenic modulation of CMV-infected cells by IVIG reduced viral protein synthesis and virus production. The half-life of antibody bound to CMV-infected cells was 3.8 h. NT antibody titers to varicella-zoster virus (VZV) and CMV in IVIG were dose dependently absorbed by cells infected with VZV and CMV, respectively, but the antibody titers to CMV and VZV, respectively, were not affected. NT antibody in 0.3 mL of IVIG (15 mg) was specifically absorbed by 108 CMV-infected cells and 107 VZV-infected cells, suggesting that the NT antibody in IVIG might be inactivated by one-tenth of a similar volume of CMV-infected or VZV-infected cells. Various antiviral activities of IVIG may contribute to control and alleviation of CMV infection.


Subject(s)
Antibodies, Neutralizing/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Immunoglobulin G/immunology , Antibodies, Viral/immunology , Antigenic Modulation , Antiviral Agents/immunology , Cells, Cultured , Humans , Immediate-Early Proteins/metabolism , Immunoglobulin G/metabolism , Immunoglobulins, Intravenous/immunology , Neutralization Tests , Virus Release/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...