Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 294: 122003, 2023 03.
Article in English | MEDLINE | ID: mdl-36736095

ABSTRACT

The mammalian brain has very limited ability to regenerate lost neurons and recover function after injury. Promoting the migration of young neurons (neuroblasts) derived from endogenous neural stem cells using biomaterials is a new and promising approach to aid recovery of the brain after injury. However, the delivery of sufficient neuroblasts to distant injured sites is a major challenge because of the limited number of scaffold cells that are available to guide neuroblast migration. To address this issue, we have developed an amphiphilic peptide [(RADA)3-(RADG)] (mRADA)-tagged N-cadherin extracellular domain (Ncad-mRADA), which can remain in mRADA hydrogels and be injected into deep brain tissue to facilitate neuroblast migration. Migrating neuroblasts directly contacted the fiber-like Ncad-mRADA hydrogel and efficiently migrated toward an injured site in the striatum, a deep brain area. Furthermore, application of Ncad-mRADA to neonatal cortical brain injury efficiently promoted neuronal regeneration and functional recovery. These results demonstrate that self-assembling Ncad-mRADA peptides mimic both the function and structure of endogenous scaffold cells and provide a novel strategy for regenerative therapy.


Subject(s)
Cadherins , Neural Stem Cells , Animals , Brain , Neurons , Peptides , Mammals
2.
Technol Health Care ; 30(4): 787-798, 2022.
Article in English | MEDLINE | ID: mdl-35068425

ABSTRACT

BACKGROUND: To develop wearable healthcare sensors that use fiber Bragg grating (FBG) sensors, a stretch textile product with an embedded FBG sensor is required. OBJECTIVE: The FBG sensor, which is an optical fiber, was embedded into a textile product following a wavy pattern by using a warp knitting machine. METHODS: When an optical fiber is embedded in a textile product, the effect of the cycle length of wavy pattern and the number of cycles on the optical loss is verified. The shorter the cycle length of the wavy pattern of the optical fiber, and more increase in the number of cycles, the longer the textile product in which the optical fiber is embedded can expand and contract. However, when the cycle length of the wave pattern is 30 mm (shortest), large in optical loss, the pulse wave signal cannot be measured. If the cycle length of the wavy pattern is 50 mm or more, small in optical loss, the pulse wave signal is measured. RESULTS: Compared with a straight pattern embedding FBG sensor, the amplitude value of the pulse wave signal measured with a cycle length of 50 mm is large, therefore the sensor sensitivity in this state is greater. This result is consistent with the measurement sensitivity depending on the angle of installation with respect to the direction of the artery. CONCLUSION: With a cycle length of wavy pattern of 50 mm and 4 cycles, a stretch textile product with an embedded FBG sensor can be fabricated. Pulse wave signals are measured with this textile product, and the development of wearable healthcare sensors is expected.


Subject(s)
Optical Fibers , Wearable Electronic Devices , Delivery of Health Care , Heart Rate , Humans , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL
...