Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e22142, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38045185

ABSTRACT

Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.

2.
Environ Monit Assess ; 194(5): 339, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35389105

ABSTRACT

There have been many global studies on the occurrence and distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic resources, but reports on the effects of physicochemical properties of water on their concentrations are very scarce. The amounts and removal of these contaminants in various environmental media are dependent on these physicochemical properties, which include pH, temperature, electrical conductivity, salinity, turbidity, and dissolved oxygen. Here, we reviewed the influence of these properties on determination of PPCPs. Reports showed that increase in turbidity, electrical conductivity, and salinity gives increase in concentrations of PPCPs. Also, neutral pH gives higher PPCP concentrations, while decrease in temperature and dissolved oxygen gives low concentration of PPCPs. Nevertheless, it is quite challenging to ascertain the influence of water quality parameters on the PPCP concentration, as other factors like climate change, type of water, source of pollution, persistence, and dilution factor may have great influence on the concentration of PPCPs. Therefore, routine monitoring is suggested as most water quality parameters vary because of effects of climate change.


Subject(s)
Cosmetics , Water Pollutants, Chemical , Cosmetics/analysis , Environmental Monitoring , Oxygen , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis , Wetlands
3.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164097

ABSTRACT

The concentrations, potential sources, and compositional profile of PBDEs in the surface water and sediment of Nahoon Estuary, East London, South Africa, were investigated with solid-phase extraction and ultra-sonication, respectively, followed by gas-chromatography-electron capture detection. The seasonal range of the contaminants' concentrations in water and sediment samples in spring season were ∑PBDE 329 ± 48.3 ng/L (25.32-785 ng/L) and ∑PBDE 4.19 ± 0.35 ng/g dw (1.91-6.57 ng/g), but ∑PBDE 62.1 ± 1.50 ng/L (30.1-110 ng/L) and ∑PBDE 65.4 ± 15.9 ng/g dw (1.98-235 ng/g) in summer, respectively. NH1 (first sampling point) was the most contaminated site with PBDE in the Estuary. The potential source of pollution is attributed to the stormwater runoff from a creek emptying directly into the Estuary. This study's dominant PBDE congener is BDE-17, ranging from below detection limit to 247 ng/L and 0.14-32.1 ng/g in water and sediment samples, respectively. Most detected at all the sites were BDE-17, 47, 66, and 100. Most BDE-153 and 183 are found in sediment in agreement with the fact that higher brominated congeners of PBDE adsorb to solid materials. There was no correlation between the congeners and organic carbon and organic matter. However, the human health risk assessment conducted revealed that the PBDE concentration detected in the estuary poses a low eco-toxicological risk. Nevertheless, constant monitoring should be ensured to see that the river remains safe for the users, as it serves as a form of recreation to the public and a catchment to some neighbourhoods.

4.
Environ Geochem Health ; 44(10): 3409-3424, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34609624

ABSTRACT

This study investigates the pollution of Markman stormwater runoff, which is a tributary to Swartkops River Estuary. Solid-phase and ultrasonic extraction methods were utilized in the extraction of water and sediment samples, respectively. The pH of the sampling sites was above the EU guideline. The ranges of concentration of [Formula: see text]PBDE obtained in water and sediment samples for all the seasons were 58.47-1357 ng/L and 175-408 ng/g, respectively. Results also showed that BDE-66 was the dominant congener, specifically in the industrial zone, where its concentrations ranged from 2 to 407 ng/g in sediment. Consequently, the high concentration of BDE- 66 in the sediment of stormwater calls for concern. Penta-BDE suggests potential moderate eco-toxicological risk, as evident in the calculated risk assessment. The result showed possible photodegradation along the contaminant's travel time, as only 7% of the PBDE was detected at the point of entry into the Swartkops River Estuary. Markman stormwater may be contributing heavily to the pollution load of Swartkops River, as evident in the alarming concentrations of PBDEs obtained. The industries at this zone should eliminate the contaminants before discharging their effluents into the canal.


Subject(s)
Halogenated Diphenyl Ethers , Water Pollutants, Chemical , China , Environmental Monitoring/methods , Geologic Sediments , Halogenated Diphenyl Ethers/analysis , Halogenated Diphenyl Ethers/toxicity , Risk Assessment , Rivers , South Africa , Water , Water Pollutants, Chemical/analysis
5.
Mar Pollut Bull ; 173(Pt A): 113012, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607130

ABSTRACT

The presence of pharmaceuticals in surface water and sediment has sparked up a global concern, as they could cause harm to human health. In this study, we investigated five pharmaceuticals (caffeine, carbamazepine, sulfamethoxazole, testosterone, and trimethoprim) in surface water and sediment samples from Swartkops River Estuary and Markman Stormwater Canal, in the Eastern Cape Province, South Africa. Ultra-Performance Liquid Chromatography (UPLC) systems coupled with a hyphenated quadrupole-time-of-flight mass spectrometry (QTOF-MS) was used for the analysis. Of the five pharmaceuticals investigated, three were detected in sediment samples at concentrations ranging from BDL - 23.86 µg/kg (dw). Caffeine and sulfamethoxazole were below the detection limit. The finding of this current study suggests that Markman and Motherwell's stormwater canals were potential contributors to pollution in Swartkops River Estuary. Ecotoxicity risk assessment indicated that trimethoprim and carbamazepine could constitute potential risk to aquatic organisms in Markman Canal and Swartkops Estuary, suggesting the need for proper control measure to prevent the pollution from toxicants in aquatic resources.


Subject(s)
Rivers , Water Pollutants, Chemical , Environmental Monitoring , Estuaries , Humans , Risk Assessment , Seasons , South Africa , Water , Water Pollutants, Chemical/analysis
6.
J Environ Health Sci Eng ; 19(1): 1229-1247, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34150307

ABSTRACT

PBDEs are human-influenced chemicals utilized massively as flame retardants. They are environmentally persistent, not easily degraded, bioaccumulate in the biological tissue of organisms, and bio-magnify across the food web. They can travel over a long distance, with air and water being their possible transport media. They can be transferred to non-target organisms by inhalation, oral ingestion, breastfeeding, or dermal contact. These pollutants adsorb easily to solid matrices due to their lipophilicity and hydrophobicity; thus, sediments from rivers, lakes, estuaries, and ocean are becoming their major reservoirs aquatic environments. They have low acute toxicity, but the effects of interfering with the thyroid hormone metabolism in the endocrine system are long term. Many congeners of PBDEs are considered to pose a danger to humans and the aquatic environment. They have shown the possibility of causing many undesirable effects, together with neurologic, immunological, and reproductive disruptions and possible carcinogenicity in humans. PBDEs have been detected in small amounts in biological samples, including hair, human semen, blood, urine, and breastmilk, and environmental samples such as sediment, soil, sewage sludge, air, biota, fish, mussels, surface water, and wastewater. The congeners prevailing in environmental samples, with soil being the essential matrix, are BDE 47, 99, and 100. BDE 28, 47, 99, 100, 153, 154, and 183 are more frequently detected in human tissues, whereas in sediment and soil, BDE 100 and 183 predominate. Generally, BDE 153 and 154 appear very often across different matrices. However, BDE 209 seems not frequently determined, owing to its tendency to quickly breakdown into smaller congeners. This paper carried out an overview of PBDEs in the environmental, human, and biota niches with their characteristics, physicochemical properties, and fate in the environment, human exposure, and health effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...