Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Res ; 134(5): 933-946, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34155542

ABSTRACT

To understand genetic diversity in focal species, it is important to consider the possibility of speciation with gene flow, especially in species with porous genomes such as oaks. We studied genetic diversity and structure in three oaks, Quercus mongolica var. mongolicoides (QM), Q. mongolica var. crispula (QC) and Q. serrata (QS), growing in the Tokai region, central Japan. QM is semi-endemic to the region while the others are common taxa. We also conducted demographic modeling to infer their population size change and migration histories using an approximate Bayesian computation (ABC) approach. The three taxa showed distinct genetic structures but there was genetic admixture among the taxa, especially between QM and QC. ABC analysis of population size change revealed that the population size of QM was stable during and after the last glacial period, while QC and QS showed population expansion after the last glacial maximum. ABC analysis of population divergence and migration revealed that continuous gene flow between QM and QC after their divergence was supported, while between QM and QS, and between QC and QS, secondary contact after sufficient isolation was supported. These historical migration patterns among the three taxa indicate that QM and QC are currently in the early stage or gray zone of speciation, whereas speciation of the other two taxon pairs is considered to have almost been established. Observed gene flow patterns and strength between QM and QC, and between QM and QS, were explained by both flowering patterns and historical distributions, but those between QC and QS were not.


Subject(s)
Quercus , Bayes Theorem , Gene Flow , Genetic Speciation , Genetic Variation , Japan , Phylogeny , Population Density , Quercus/genetics
2.
J Plant Res ; 124(6): 645-54, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21258956

ABSTRACT

Previous studies have reached different discussions about the genetic variation and genetic structure of Quercus crispula populations in northeastern Japan. This is a common oak species in Eastern Asia. Some studies have suggested that the populations in northeastern Japan were derived from those remaining in the southwest after the last glacial maximum (LGM), whilst other studies have found evidence that populations persisted in northeastern Japan during the LGM. Using seven highly polymorphic nuclear simple sequence repeat loci, we investigated the genetic structure of 16 Q. crispula populations along a latitudinal gradient in northeastern Japan (northern Honshu and Hokkaido), spanning about half of the species' biogeographic range in the country. Although the level of population differentiation was low (F (ST) = 0.021; [Formula: see text] = 0.090), two geographically differentiated clusters were detected by STRUCTURE analysis. The first cluster included most of the populations in Hokkaido, and may indicate continued survival throughout past glacial periods. We found a significant decrease in allelic richness with latitude, so the second cluster may represent an expansion of the lineage from Honshu during the post-glacial period. These results should enhance our understanding of historical north-south migrations of this species in northeastern Japan.


Subject(s)
Genetic Variation , Quercus/genetics , Genetics, Population , Japan , Microsatellite Repeats
SELECTION OF CITATIONS
SEARCH DETAIL
...