Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(10): e0275899, 2022.
Article in English | MEDLINE | ID: mdl-36240134

ABSTRACT

Understanding biological and environmental factors that influence movement behaviors and population connectivity of highly migratory fishes is essential for cooperative international management and conservation of exploited populations, like bluefin tuna. Pacific bluefin tuna Thunnus orientalis (PBT) spawn in the western Pacific Ocean and then juveniles disperse to foraging grounds across the North Pacific. Several techniques have been used to characterize the distribution and movement of PBT, but few methods can provide complete records across ontogeny from larvae to adult in individual fish. Here, otolith biominerals of large PBT collected from the western, eastern, and south Pacific Ocean, were analyzed for a suite of trace elements across calcified/proteinaceous growth zones to investigate patterns across ontogeny. Three element:Ca ratios, Li:Ca, Mg:Ca, and Mn:Ca displayed enrichment in the otolith core, then decreased to low stable levels after age 1-2 years. Thermal and metabolic physiologies, common diets, or ambient water chemistry likely influenced otolith crystallization, protein content, and elemental incorporation in early life. Although similar patterns were also exhibited for otolith Sr:Ca, Ba:Ca and Zn:Ca in the first year, variability in these elements differed significantly after age-2 and in the otolith edges by capture region, suggesting ocean-specific environmental factors or growth-related physiologies affected otolith mineralization across ontogeny.


Subject(s)
Otolithic Membrane , Trace Elements , Animals , Fishes , Otolithic Membrane/chemistry , Pacific Ocean , Trace Elements/analysis , Tuna/physiology , Water/metabolism
2.
Sci Rep ; 11(1): 14216, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244525

ABSTRACT

Geochemical chronologies were constructed from otoliths of adult Pacific bluefin tuna (PBT) to investigate the timing of age-specific egress of juveniles from coastal nurseries in the East China Sea or Sea of Japan to offshore waters of the Pacific Ocean. Element:Ca chronologies were developed for otolith Li, Mg, Mn, Zn, Sr, and Ba, and our assessment focused on the section of the otolith corresponding to the age-0 to age-1 + interval. Next, we applied a common time-series approach to geochemical profiles to identify divergences presumably linked to inshore-offshore migrations. Conspicuous geochemical shifts were detected during the juvenile interval for Mg:Ca, Mn:Ca, and Sr:Ca that were indicative of coastal-offshore transitions or egress generally occurring for individuals approximately 4-6 mo. old, with later departures (6 mo. or older) linked to overwintering being more limited. Changepoints in otolith Ba:Ca profiles were most common in the early age-1 period (ca. 12-16 mo.) and appear associated with entry into upwelling areas such as the California Current Large Marine Ecosystem following trans-Pacific migrations. Natal origin of PBT was also predicted using the early life portion of geochemical profile in relation to a baseline sample comprised of age-0 PBT from the two primary spawning areas in the East China Sea and Sea of Japan. Mixed-stock analysis indicated that the majority (66%) of adult PBT in our sample originated from the East China Sea, but individuals of Sea of Japan origin were also detected in the Ryukyu Archipelago.

3.
Biol Lett ; 16(2): 20190878, 2020 02.
Article in English | MEDLINE | ID: mdl-32019467

ABSTRACT

Natal origin of subadult (age-1) Pacific bluefin tuna (PBT, Thunnus orientalis) from the California Current Large Marine Ecosystem (CCLME) was determined using natural tracers in ear stones (otoliths). Age-0 PBT collected from the two known spawning areas in the western Pacific Ocean (East China Sea, Sea of Japan) were used to establish baseline signatures from otolith cores over 4 years (2014-2017) based on a suite of trace elements (Li, Mg, Mn, Sr, Zn and Ba). Distinct chemical signatures existed in the otolith cores of age-0 PBT collected from the two spawning areas, with overall classification accuracy ranging 73-93% by year. Subadult PBT collected in the CCLME over the following 4 years (2015-2018) were then age-class matched to baselines using mixed-stock analysis. Natal origin of trans-Pacific migrants in the CCLME ranged 43-78% from the East China Sea and 22-57% from the Sea of Japan, highlighting the importance of both spawning areas for PBT in the CCLME. This study provides the first estimates on the natal origin of subadult PBT in this ecosystem using otolith chemistry and expands upon the application of these natural tracers for population connectivity studies for this species.


Subject(s)
Ecosystem , Tuna , Animals , California , China , Japan , Pacific Ocean
4.
PLoS One ; 14(9): e0222824, 2019.
Article in English | MEDLINE | ID: mdl-31553780

ABSTRACT

Lipid and fatty acid composition of female Pacific bluefin tuna (PBF, Thunnus orientalis) reproductive and somatic tissues in southwestern North Pacific and Sea of Japan spawning grounds are compared. Total lipid (TL) levels are higher in liver than white muscle tissues. An increased gonadosomatic index (GSI) during the early spawning season coincided with decreased TL. Levels of triacylglycerols (TAG) in PBF liver tissues from the Nansei Islands and Sea of Japan, and white muscle in fishes from the Sea of Japan, decreased during the spawning season, while TAG in ovary tissues did not. Concurrent reductions in TL and increases in GSI early in the spawning season suggest TAG depletion was caused by allocation from liver and white muscle tissues to oocytes, that the liver is one of the important lipid-storage organs in PBF, and this species mostly reliant on capital deposits as a mixed capital-income breeder. Differences of docosahexaenoic acid (DHA) levels between spawning grounds were lower in ovary than in muscle and liver tissues. However, eicosapentaenoic (EPA) and arachidonic acid (ARA) levels that influence egg development and embryo and larval growth are significantly higher in PBF tissues from the Sea of Japan than Nansei Islands, which coincided with larval quality. These suggest a maternal effect exists, with egg quality influencing offspring survival, and that the reproductive strategy of PBF varies according to local variation at each spawning ground.


Subject(s)
Fatty Acids/metabolism , Mothers , Reproduction/physiology , Triglycerides/metabolism , Tuna/metabolism , Animals , Fatty Acids/analysis , Female , Japan , Larva/physiology , Muscles/metabolism , Ovary/metabolism , Pacific Ocean , Seasons , Triglycerides/analysis
5.
Lipids ; 53(9): 919-929, 2018 09.
Article in English | MEDLINE | ID: mdl-30411800

ABSTRACT

A method for the direct preparation of fatty-acid methyl esters (FAME) was simplified for fatty-acid analysis of a single fish larva using gas chromatography (GC). The method included the isolation of a larval trunk and drying in a glass vial, followed by saponification of all the contents without prior lipid extraction. Thereafter, the fatty acids released were methylated by trimethylsilyldiazomethane. This method has advantages over another method, direct acid-catalyzed transesterification, because both the saponification and methylation at room temperature can reduce loss of unsaturated fatty acids and formation of artifacts unavoidable in acidic reaction at high temperature. GC of the products showed that the simplified method can yield methyl esters without artifacts interfering analysis. More than 50 fatty acids were determined, which are twice as many as those previously analyzed using high-performance liquid chromatography. Observation of consistent small impurities in GC of blank tests allowed the accurate determination of fatty acids by correcting the peak areas. Dry matter weights (<3 mg) and the total fatty-acid contents displayed a linear relationship. Fatty-acid analysis of wild larvae of bluefin tuna, yellowfin tuna, and skipjack tuna collected from the waters around Japan (n = 100) revealed that the eicosapentaenoic acid (EPA) level in bluefin tuna collected from the Japan Sea was significantly higher than that in the three species collected from Nansei Islands. The simplified direct saponification/methylation method will be a powerful tool for investigating growth and survival of individual larval tuna and other fish species.


Subject(s)
Fatty Acids/analysis , Fatty Acids/chemistry , Larva/chemistry , Tuna , Animals , Chromatography, Gas , Fatty Acids/metabolism , Japan , Larva/metabolism , Methylation , Tuna/growth & development , Tuna/metabolism
6.
Sci Rep ; 7(1): 10619, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878365

ABSTRACT

Population growth rate, which depends on several biological parameters, is valuable information for the conservation and management of pelagic sharks, such as blue and shortfin mako sharks. However, reported biological parameters for estimating the population growth rates of these sharks differ by sex and display large variability. To estimate the appropriate population growth rate and clarify relationships between growth rate and relevant biological parameters, we developed a two-sex age-structured matrix population model and estimated the population growth rate using combinations of biological parameters. We addressed elasticity analysis and clarified the population growth rate sensitivity. For the blue shark, the estimated median population growth rate was 0.384 with a range of minimum and maximum values of 0.195-0.533, whereas those values of the shortfin mako shark were 0.102 and 0.007-0.318, respectively. The maturity age of male sharks had the largest impact for blue sharks, whereas that of female sharks had the largest impact for shortfin mako sharks. Hypotheses for the survival process of sharks also had a large impact on the population growth rate estimation. Both shark maturity age and survival rate were based on ageing validation data, indicating the importance of validating the quality of these data for the conservation and management of large pelagic sharks.


Subject(s)
Biology , Conservation of Natural Resources , Knowledge , Sharks , Animals , Biology/education , Female , Male , Population Growth
SELECTION OF CITATIONS
SEARCH DETAIL
...