Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1506: 91-100, 2017.
Article in English | MEDLINE | ID: mdl-27830547

ABSTRACT

Primary or cryopreserved human hepatocytes (h-heps) have been used as the gold standard for in vitro metabolism and hepatotoxicity studies; however, the supply of h-heps is limited and they cannot grow in vitro. We achieved approximately 1000-fold propagation of h-heps in the liver of albumin promoter/enhancer-driven urokinase-type plasminogen activator transgenic/severe combined immunodeficiency disease (uPA/SCID) mice with genetically induced liver disease and immunodeficiency. When h-heps are transplanted into the uPA/SCID mouse liver via the spleen, the h-heps engraft in the mouse liver, resulting in its repopulation with h-heps. We have named this model "chimeric mouse with humanized liver, PXB-mouse®." Fresh h-heps can be isolated from the chimeric mice (PXB-cells®) and have been used for in vitro studies.The efficacy and safety of chemical entities for use in humans are estimated using experimental animals such as rats and mice. The drug development of many chemical entities has been halted because of metabolic differences between humans and animals during clinical studies. Therefore, chimeric mice with humanized liver have been used to predict human-type metabolism and safety conditions for h-heps. In addition, until recently there were no suitable hepatitis B or C virus (HBV or HCV) susceptible animal models aside from chimpanzees. Chimeric mice are the sole persistent infectious small animal model for HBV and HCV and they have been used to investigate the efficacy of new anti-HBV or HCV agents.In this chapter, we describe a method for producing chimeric mice with humanized liver using uPA/SCID mice.


Subject(s)
Cell Transplantation/methods , Disease Models, Animal , Hepatocytes/transplantation , Liver Diseases/genetics , Transplantation Chimera/physiology , Albumins/genetics , Animals , Female , Hepatocytes/physiology , Humans , Liver/cytology , Liver/surgery , Liver Diseases/surgery , Male , Mice , Mice, SCID , Mice, Transgenic , Promoter Regions, Genetic/genetics , Transplantation, Heterologous , Urokinase-Type Plasminogen Activator/genetics
2.
PLoS One ; 10(11): e0142145, 2015.
Article in English | MEDLINE | ID: mdl-26536627

ABSTRACT

We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for producing chimeric mice for use in future long-term studies, including hepatitis virus infection analysis or drug toxicity studies.


Subject(s)
Chimerism , Disease Models, Animal , Hepatitis, Viral, Human , Liver/metabolism , Mice, Inbred Strains/genetics , Animals , Breeding , Child , Child, Preschool , Female , Hemizygote , Hepatitis Viruses/pathogenicity , Hepatocytes/transplantation , Humans , Liver/cytology , Male , Mice, Inbred Strains/virology , Mice, SCID
3.
Drug Metab Dispos ; 43(8): 1208-17, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25979261

ABSTRACT

We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Liver/enzymology , Albumins/metabolism , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Chimera , Cytochrome P-450 CYP3A , Cytochrome P450 Family 2 , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Hepatocytes/transplantation , Humans , Intestinal Mucosa/metabolism , Isoenzymes/genetics , Mice , Mice, Knockout , Mice, SCID , Mice, Transgenic , Microsomes, Liver/metabolism , Midazolam/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Steroid Hydroxylases/genetics , Triazolam/metabolism , Urokinase-Type Plasminogen Activator/metabolism
4.
Xenobiotica ; 45(7): 605-14, 2015.
Article in English | MEDLINE | ID: mdl-25733030

ABSTRACT

1. We used chimeric mice (PXB mice®), which were repopulated with human hepatocytes, to evaluate their predictabilities of human pharmacokinetics. 2. The relationships of total clearance (CLt) and the volume of distribution at steady state (Vdss) between that predicted from single-species allometric scaling (SSS) of PXB mice and the observed human values indicated good correlations for various drugs metabolized by cytochrome P450s (CYPs) and non-CYPs. 3. We examined the Dedrick plot with which the plasma concentration-time curves can exhibit superimposability using SSS of PXB mice for CLt and Vdss. The predicted plasma concentration-time curves using the complex Dedrick plot from PXB mice were generally superimposed with the observed human data. 4. However, the predicted curve of diazepam was not superimposable with the observed profile. Residual mouse hepatocytes in the livers of PXB mice may affect predictability of CLt of diazepam because significant discrepancy of in vitro intrinsic clearance in PXB mouse liver microsomes consisted of low and high replacement of human hepatocytes were observed. 5. The complex Dedrick plot with SSS from PXB mice is useful for predicting the plasma concentration-time curve in drug discovery, although there are some limitations.


Subject(s)
Pharmaceutical Preparations/blood , Pharmaceutical Preparations/metabolism , Animals , Child, Preschool , Chimera , Humans , Liver , Male , Mice , Species Specificity , Time Factors
5.
Drug Metab Dispos ; 40(12): 2267-72, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22936315

ABSTRACT

Prediction of human drug metabolism is important for drug development. Recently, the number of new drug candidates metabolized by not only cytochrome P450 (P450) but also non-P450 has been increasing. It is necessary to consider species differences in drug metabolism between humans and experimental animals. We examined species differences of drug metabolism, especially between humans and rats, for ibuprofen and (S)-naproxen as nonsteroidal anti-inflammatory drugs, which are metabolized by P450 and UDP-glucuronosyltransferase, sulfotransferase, and amino acid N-acyltransferase for taurine conjugation in liver, using human chimeric mice (h-PXB mice) repopulated with human hepatocytes and rat chimeric mice (r-PXB mice) transplanted with rat hepatocytes. We performed the direct comparison of excretory metabolites in urine between h-PXB mice and reported data for humans as well as between r-PXB mice and rats after administration of ibuprofen and (S)-naproxen. Good agreement for urinary metabolites (percentage of dose) was observed not only between humans and h-PXB mice but also between rats and r-PXB mice. Therefore, the metabolic profiles in humans and rats reflected those in h-PXB mice and r-PXB mice. Our results indicated that h-PXB mice should be helpful for predicting the quantitative metabolic profiles of drugs mediated by P450 and non-P450 in liver, and r-PXB mice should be helpful for evaluation of species differences in these metabolic enzymes.


Subject(s)
Chimera/metabolism , Hepatocytes/metabolism , Ibuprofen/metabolism , Inactivation, Metabolic/physiology , Naproxen/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/enzymology , Humans , Male , Metabolome , Mice , Mice, SCID , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley
6.
Drug Metab Dispos ; 40(2): 322-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22048522

ABSTRACT

Accurate prediction of pharmacokinetics (PK) parameters in humans from animal data is difficult for various reasons, including species differences. However, chimeric mice with humanized liver (PXB mice; urokinase-type plasminogen activator/severe combined immunodeficiency mice repopulated with approximately 80% human hepatocytes) have been developed. The expression levels and metabolic activities of cytochrome P450 (P450) and non-P450 enzymes in the livers of PXB mice are similar to those in humans. In this study, we examined the predictability for human PK parameters from data obtained in PXB mice. Elimination of selected drugs involves multiple metabolic pathways mediated not only by P450 but also by non-P450 enzymes, such as UDP-glucuronosyltransferase, sulfotransferase, and aldehyde oxidase in liver. Direct comparison between in vitro intrinsic clearance (CL(int,in vitro)) in PXB mice hepatocytes and in vivo intrinsic clearance (CL(int,in vivo)) in humans, calculated based on a well stirred model, showed a moderate correlation (r² = 0.475, p = 0.009). However, when CL(int,in vivo) values in humans and PXB mice were compared similarly, there was a good correlation (r² = 0.754, p = 1.174 × 10⁻4). Elimination half-life (t(1/2)) after intravenous administration also showed a good correlation (r² = 0.886, p = 1.506 × 10⁻4) between humans and PXB mice. The rank order of CL and t(1/2) in human could be predicted at least, although it may not be possible to predict absolute values due to rather large prediction errors. Our results indicate that in vitro and in vivo experiments with PXB mice should be useful at least for semiquantitative prediction of the PK characteristics of candidate drugs in humans.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Drug Evaluation, Preclinical/methods , Drugs, Investigational/metabolism , Drugs, Investigational/pharmacokinetics , Liver/metabolism , Animals , Cells, Cultured , Child, Preschool , Chimera , Cytochrome P-450 Enzyme System/genetics , Drugs, Investigational/analysis , Female , Half-Life , Hepatocytes/cytology , Hepatocytes/enzymology , Hepatocytes/metabolism , Hepatocytes/transplantation , Humans , Immunomagnetic Separation , Liver/cytology , Liver/enzymology , Male , Metabolic Clearance Rate , Mice , Mice, SCID , Recombinant Proteins/metabolism , Species Specificity , Urokinase-Type Plasminogen Activator/genetics
7.
Drug Metab Pharmacokinet ; 24(2): 153-60, 2009.
Article in English | MEDLINE | ID: mdl-19430171

ABSTRACT

Chimeric mice, constructed by transplanting human hepatocytes, are useful for predicting the human metabolism of drug candidates. In this study, we investigated whether these mice show similar metabolic profile to humans by examining the hydroxylation of S-warfarin reported to be mainly metabolized to S-7-hydroxywarfarin (7-OH-warfarin), catalyzed by CYP2C9, in humans. When S-(3)H-warfarin was administered to chimeric mice and control (uPA(+/+)/SCID(wt/wt)) mice, the blood concentration-time curve was higher in chimeric than control mice. Plasma protein binding of S-(3)H-warfarin of chimeric and control mice amounted to 98.1 and 92.1%, respectively. When S-(3)H-warfarin was administered to these mice, radioactivity was mainly recovered in urine (81.7% in chimeric mice and 65.9% in control mice). After S-(3)H-warfarin was administered to these mice, the radioactivity was recovered in the bile of chimeric and control mice at 5.1 and 17.9%, respectively. The main urinary metabolite in chimeric mice was 7-OH-warfarin. the main urinary metabolite in control mice was S-4'-hydroxywarfarin. These results show that mass balance, metabolic disposition of S-(3)H-warfarin in chimeric mice with humanized liver were similar to reported human data.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Chimera/metabolism , Warfarin/analogs & derivatives , Animals , Bile/metabolism , Cytochrome P-450 CYP2C9 , Humans , Male , Mice , Mice, SCID , Warfarin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...