Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1199398, 2023.
Article in English | MEDLINE | ID: mdl-37483338

ABSTRACT

Introduction: Motor imagery (MI) is a method of imagining movement without actual movement, and its use in combination with motor execution (ME) enhances the effects of motor learning. Neurofeedback (NFB) is another method that promotes the effects of MI. This study aimed to investigate the effects of NFB on combined MI and ME (MIME) training in a standing postural control task. Methods: Sixteen participants were randomly divided into MIME and MIME + NFB groups and performed 10 trials of a postural control task on an unstable board, with nine trials of MI in between. Electroencephalogram was assessed during MI, and the MIME + NFB group received neurofeedback on the degree of MI via auditory stimulation. A postural control task using an unstable board was performed before and after the MIME task, during which postural instability was evaluated. Results: Postural instability was reduced after the MIME task in both groups. In addition, the root mean square, which indicates the sway of the unstable board, was significantly reduced in the MIME + NFB group compared to that in the MIME group. Conclusion: Our results indicate that MIME training is effective for motor learning of standing postural control. Furthermore, when MI and ME are combined, the feedback on the degree of MI enhances the learning effect.

2.
Brain Sci ; 12(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421872

ABSTRACT

Repetitive peripheral magnetic stimulation is a novel non-invasive technique for applying repetitive magnetic stimulation to the peripheral nerves and muscles. Contrarily, a person imagines that he/she is exercising during motor imagery. Resting-state electroencephalography can evaluate the ability of motor imagery; however, the effects of motor imagery and repetitive peripheral magnetic stimulation on resting-state electroencephalography are unknown. We examined the effects of motor imagery and repetitive peripheral magnetic stimulation on the vividness of motor imagery and resting-state electroencephalography. The participants were divided into a motor imagery group and motor imagery and repetitive peripheral magnetic stimulation group. They performed 60 motor imagery tasks involving wrist dorsiflexion movement. In the motor imagery and repetitive peripheral magnetic stimulation group, we applied repetitive peripheral magnetic stimulation to the extensor carpi radialis longus muscle during motor imagery. We measured the vividness of motor imagery and resting-state electroencephalography before and after the task. Both groups displayed a significant increase in the vividness of motor imagery. The motor imagery and repetitive peripheral magnetic stimulation group exhibited increased ß activity in the anterior cingulate cortex by source localization for electroencephalography. Hence, combined motor imagery and repetitive peripheral magnetic stimulation changes the resting-state electroencephalography activity and may promote motor imagery.

SELECTION OF CITATIONS
SEARCH DETAIL
...