Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 31(Pt 2): 343-354, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38372672

ABSTRACT

Recently, there has been a high demand for elucidating kinetics and visualizing reaction processes under extreme dynamic conditions, such as chemical reactions under meteorite impact conditions, structural changes under nonequilibrium conditions, and in situ observations of dynamic changes. To accelerate material science studies and Earth science fields under dynamic conditions, a submillisecond in situ X-ray diffraction measurement system has been developed using a diamond anvil cell to observe reaction processes under rapidly changing pressure and temperature conditions replicating extreme dynamic conditions. The development and measurements were performed at the high-pressure beamline BL10XU/SPring-8 by synchronizing a high-speed hybrid pixel array detector, laser heating and temperature measurement system, and gas-pressure control system that enables remote and rapid pressure changes using the diamond anvil cell. The synchronized system enabled momentary heating and rapid cooling experiments up to 5000 K via laser heating as well as the visualization of structural changes in high-pressure samples under extreme dynamic conditions during high-speed pressure changes.

2.
Phys Rev Lett ; 130(26): 266301, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37450814

ABSTRACT

We determined the electrical resistivity of liquid Fe to 135 GPa and 6680 K using a four-probe method in a diamond-anvil cell combined with two novel techniques: (i) enclosing a molten Fe in a sapphire capsule, and (ii) millisecond time-resolved simultaneous measurements of the resistance, x-ray diffraction, and temperature of instantaneously melted Fe. Our results show the minimal temperature dependence of the resistivity of liquid Fe and its anomalous resistivity decrease around 50 GPa, likely associated with a gradual magnetic transition, both in agreement with previous ab initio calculations.


Subject(s)
Diamond , Electricity , Iron , Temperature , X-Ray Diffraction
3.
Rev Sci Instrum ; 93(10): 105103, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319335

ABSTRACT

The electrical conductivity (EC) of minerals found on Earth and throughout the solar system is a fundamental transport property that is used to understand various dynamical phenomena in planetary interiors. High-pressure and high-temperature (P-T) EC measurements are also an important tool for observing phase transitions. Impedance measurements can accurately measure the EC of a nonmetallic sample. In previous measurements under static conditions using a laser-heated diamond-anvil cell (LHDAC), only direct current resistance is measured, but this method overestimates the bulk sample resistance. Moreover, the previous methodology could only be applied to nontransparent samples in an LHDAC using infrared lasers, limiting the range of measurable composition. To the best of our knowledge, no in situ high-P-T EC measurements of transparent materials have been reported using LHDAC techniques. We developed a novel impedance measurement technique under high-P-T conditions in an LHDAC that applies to transparent samples. As a validation, we measured the EC of Mg0.9Fe0.1SiO3 bridgmanite up to 51 GPa and 2000 K and found that the results are consistent with those of previous studies. We also measured the EC values of sodium chloride to compare with those of previous studies, as well as those of cubic boron nitride and zirconia cement to quantify how well they insulate under high P-T conditions. This is the first report of the impedance and EC measurements of transparent minerals in an LHDAC, which allows the measurement of Fe-poor/-free materials, including the major constituents of the interiors of gas giants and icy planets, under extreme conditions.

4.
Sci Rep ; 11(1): 20894, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686749

ABSTRACT

Earth's surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean ([Formula: see text] [Formula: see text] [Formula: see text][Formula: see text], where [Formula: see text] is the oxygen fugacity, [Formula: see text] is [Formula: see text], and [Formula: see text] is [Formula: see text] at the iron-wüstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone.

5.
Natl Sci Rev ; 8(4): nwaa303, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34691620

ABSTRACT

Determining the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the Earth's metallic cores. The authors summarize relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.

6.
Sci Rep ; 11(1): 19471, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34593901

ABSTRACT

The crystallization of the magma ocean resulted in the present layered structure of the Earth's mantle. An open question is the electronic spin state of iron in bridgmanite (the most abundant mineral on Earth) crystallized from a deep magma ocean, which has been neglected in the crystallization history of the entire magma ocean. Here, we performed energy-domain synchrotron Mössbauer spectroscopy measurements on two bridgmanite samples synthesized at different pressures using the same starting material (Mg0.78Fe0.13Al0.11Si0.94O3). The obtained Mössbauer spectra showed no evidence of low-spin ferric iron (Fe3+) from the bridgmanite sample synthesized at relatively low pressure of 25 gigapascals, while that directly synthesized at a higher pressure of 80 gigapascals contained a relatively large amount. This difference ought to derive from the large kinetic barrier of Fe3+ rearranging from pseudo-dodecahedral to octahedral sites with the high-spin to low-spin transition in experiments. Our results indicate a certain amount of low-spin Fe3+ in the lower mantle bridgmanite crystallized from an ancient magma ocean. We therefore conclude that primordial bridgmanite with low-spin Fe3+ dominated the deeper part of an ancient lower mantle, which would contribute to lower mantle heterogeneity preservation and call for modification of the terrestrial mantle thermal evolution scenarios.

7.
Rev Sci Instrum ; 92(1): 015119, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33514222

ABSTRACT

Semiconductor-based heaters for diamond anvil cells (DACs) have advantages over metal wire heaters in terms of repeated use and the ability to reach higher temperatures. We introduce a cylindrical SiC heater for an externally heated DAC (EHDAC) that works satisfactorily at temperatures up to 1500 K and pressures around 90 GPa. The heater is reusable and inexpensive, and only slight modifications to the DAC are required to fit the heater. Experiments on melting of NaCl and gold are conducted at ambient pressure to test the temperature accuracy of the EHDAC system, and resistance measurements on iodine at high pressures and temperatures are performed to assess the heater assembly. These test runs show that a uniform and accurate temperature can be maintained by the EHDAC assembly, which has potential applications to a variety of transport property measurements.

8.
Rev Sci Instrum ; 91(9): 093703, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33003770

ABSTRACT

Three-dimensional (3D) visualization of a material under pressure can provide a great deal of information about its physical and chemical properties. We developed a technique combining in-house x-ray computed tomography (XCT) and a diamond anvil cell to observe the 3D geometry of a sample in situ at high pressure with a spatial resolution of about 610 nm. We realized observations of the 3D morphology and its evolution in minerals up to a pressure of 55.6 GPa, which is comparable to the pressure conditions reported in a previous synchrotron XCT study. The new technique developed here can be applied to a variety of materials under high pressures and has the potential to provide new insights for high-pressure science and technology.

9.
Rev Sci Instrum ; 90(7): 074901, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31370458

ABSTRACT

By combining thermoreflectance measurements and laser heated diamond anvil cell (LHDAC) techniques, an instrument for the measurement of in situ high pressure-temperature thermal diffusivity of materials was developed. In an LHDAC system, high-power continuous-wave laser beams irradiate both faces of a disk-shaped metal sample loaded into diamond anvil cells (DACs), to maintain a stable high-temperature condition. During the operation of the LHDAC system, temperature of the sample is determined from the thermal radiation spectrum between 640 and 740 nm to fit Planck's law. Subsequently, a pulsed laser beam irradiates the metal disk to induce a temperature gradient inside the sample, and the transient temperature, caused by heat diffusion, is measured by a continuous wave probe laser based on the thermoreflectance phenomenon. We determined the thermal conductivities of Pt and Fe up to approximately 60 GPa and 2000 K using the measured thermal diffusivities and obtained values consistent with previous works. The uncertainties in the pressure and the temperature are estimated to be approximately 10%, and that in the thermal conductivity is estimated to approximately 15%. The system developed in this study enables us to determine thermal transport properties of materials under pressure-temperature conditions of the deep Earth.

10.
Nature ; 534(7605): 95-8, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27251282

ABSTRACT

Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth's core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth's core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth's core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

11.
Sci Rep ; 5: 16560, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26548442

ABSTRACT

We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations.

12.
J Chem Phys ; 137(19): 194505, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23181324

ABSTRACT

Ionic conductivity and molar volume measurements were performed on H(2)O ice at high pressure (P) and temperature (T) in a resistive-heated diamond anvil cell. The conductivity data obtained at P = 20-62 GPa, T = 304-930 K are well fitted with a single Arrhenius equation. Isothermal volume measurements at T = 873 K, P = 30-101 GPa indicate that H(2)O ice undergoes phase transitions at P = 50 GPa and 53 GPa due to hydrogen-bond symmetrization. Combining these results, we suggest that the conduction mechanism does not change with pressure-induced hydrogen-bond symmetrization. Along the Arrhenius behavior of conductivity data, the experimental evidence for superionic conduction (>10(-1) S/cm) was found at T = 739 K, P = 56 GPa and T = 749 K, P = 62 GPa, which is significantly low temperature compared with earlier theoretical estimates resorted to the observation of a drastic rise of the melting curve. We infer that the sudden increase of the melting temperature is not related to the onset of superionic conduction, but is attributed to the phase change regarding to the symmetrization.

13.
Phys Rev Lett ; 108(2): 026403, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22324701

ABSTRACT

Electrical conductivity of FeO was measured up to 141 GPa and 2480 K in a laser-heated diamond-anvil cell. The results show that rock-salt (B1) type structured FeO metallizes at around 70 GPa and 1900 K without any structural phase transition. We computed fully self-consistently the electronic structure and the electrical conductivity of B1 FeO as a function of pressure and temperature, and found that although insulating as expected at ambient condition, B1 FeO metallizes at high temperatures, consistent with experiments. The observed metallization is related to spin crossover.

14.
Science ; 320(5872): 89-91, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18388291

ABSTRACT

Recent discovery of a phase transition from perovskite to post-perovskite suggests that the physical properties of Earth's lowermost mantle, called the D'' layer, may be different from those of the overlying mantle. We report that the electrical conductivity of (Mg0.9Fe0.1)SiO3 post-perovskite is >10(2) siemens per meter and does not vary greatly with temperature at the conditions of the D'' layer. A post-perovskite layer above the core-mantle boundary would, by electromagnetic coupling, enhance the exchange of angular momentum between the fluid core and the solid mantle, which can explain the observed changes in the length of a day on decadal time scales. Heterogeneity in the conductivity of the lowermost mantle is likely to depend on changes in chemistry of the boundary region, not fluctuations in temperature.

15.
Proc Jpn Acad Ser B Phys Biol Sci ; 83(3): 97-100, 2007 May.
Article in English | MEDLINE | ID: mdl-24019587

ABSTRACT

We measured the electrical conductivity of Mg0.81Fe0.19O magnesiowüstite, one of the important minerals comprising Earth's lower mantle, at high pressures up to 135 GPa and 300 K in a diamond-anvil cell (DAC). The results demonstrate that the electrical conductivity increases with increasing pressure to about 60 GPa and exhibits anomalous behavior at higher pressures; it conversely decreases to around 80 GPa and again increases very mildly with pressure. These observed changes may be explained by the high-spin to low-spin transition of iron in magnesiowüstite that was previously reported to occur in a similar pressure range. A very small pressure effect on the electrical conductivity above 80 GPa suggests that a dominant conduction mechanism changes by this electronic spin transition. The electrical conductivity below 2000-km depth in the mantle may be much smaller than previously thought, since the spin transition takes place also in (Mg,Fe)SiO3 perovskite.

SELECTION OF CITATIONS
SEARCH DETAIL
...