Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 14663, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31605018

ABSTRACT

Periodontitis is an inflammatory disease caused by pathogenic oral microorganisms that induce the destruction of periodontal tissue. We sought to identify the relevant differentially expressed genes (DEGs) and clarify the mechanism underlying the rapid alveolar bone loss by using ligature-induced periodontitis in mice. A silk ligature was tied around the maxillary left second molar in 9-week-old C57BL/6 J male mice. In-vivo micro-CT analysis revealed that ligation induced severe bone loss. RNA-sequencing analysis, to examine host responses at 3 days post-ligation, detected 12,853 genes with fragments per kilobase of exon per million mapped reads ≥ 1, and 78 DEGs. Gene ontology term enrichment analysis revealed the expression profiles related to neutrophil chemotaxis and inflammatory responses were significantly enriched in the ligated gingiva. The expression levels of innate immune response-related genes, including S100a8 and S100a9, were significantly higher in the ligated side. S100A8 was strongly detected by immunohistochemistry at the attached epithelium in ligated sites. Inhibition of S100A8 and S100A9 expression revealed that they regulated IL1B and CTSK expression in Ca9-22 cells. Thus, innate immune response-related molecules might be associated with the burst-destruction of periodontal tissue in ligature-induced periodontitis. Especially, S100A8 and S100A9 may play an important role in alveolar bone resorption.


Subject(s)
Calgranulin A/genetics , Calgranulin B/genetics , Periodontal Diseases/genetics , Periodontitis/genetics , Animals , Cathepsin K/genetics , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Interleukin-1beta/genetics , Mice , Mice, Inbred C57BL , Periodontal Diseases/physiopathology , Periodontitis/physiopathology , Periodontium/metabolism , Periodontium/physiopathology , RNA-Seq/methods
2.
Oral Dis ; 25(3): 868-880, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30667148

ABSTRACT

OBJECTIVES: Increasing evidence suggests that periodontitis can exacerbate diabetes, and gut bacterial dysbiosis appears to be linked with the diabetic condition. The present study examined the effects of oral administration of the periodontopathic bacterium, Porphyromonas gingivalis, on the gut microbiota and systemic conditions in streptozotocin-induced diabetic mice. MATERIALS AND METHODS: Diabetes was induced by streptozotocin injection in C57BL/6J male mice (STZ). STZ and wild-type (WT) mice were orally administered P. gingivalis (STZPg, WTPg) or saline (STZco, WTco). Feces were collected, and the gut microbiome was examined by 16S rRNA gene sequencing. The expression of genes related to inflammation, epithelial tight junctions, and glucose/fatty acid metabolism in the ileum or liver were examined by quantitative PCR. RESULTS: The relative abundance of several genera, including Brevibacterium, Corynebacterium, and Facklamia, was significantly increased in STZco mice compared to WTco mice. The relative abundances of Staphylococcus and Turicibacter in the gut microbiome were altered by oral administration of P. gingivalis in STZ mice. STZPg mice showed higher concentrations of fasting blood glucose and inflammatory genes levels in the ileum, compared to STZco mice. CONCLUSIONS: Oral administration of P. gingivalis altered the gut microbiota and aggravated glycemic control in streptozotocin-induced diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/microbiology , Gastrointestinal Microbiome , Porphyromonas gingivalis , Aerococcaceae/isolation & purification , Animals , Blood Glucose/metabolism , Brevibacterium/isolation & purification , Claudin-1/genetics , Corynebacterium/isolation & purification , Dysbiosis , Feces/microbiology , Gene Expression , Ileum , Inflammation/genetics , Liver , Male , Mice , Mice, Inbred C57BL , Occludin/genetics , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Sequence Analysis, RNA , Staphylococcus/isolation & purification , Streptozocin , Zonula Occludens-1 Protein/genetics
3.
Front Microbiol ; 9: 2470, 2018.
Article in English | MEDLINE | ID: mdl-30405551

ABSTRACT

Many risk factors related to the development of non-alcoholic fatty liver disease (NAFLD) have been proposed, including the most well-known of diabetes and obesity as well as periodontitis. As periodontal pathogenic bacteria produce endotoxins, periodontal treatment can result in endotoxemia. The aim of this study was to investigate the effects of intravenous, sonicated Porphyromonas gingivalis (Pg) injection on glucose/lipid metabolism, liver steatosis, and gut microbiota in mice. Endotoxemia was induced in C57BL/6J mice (8 weeks old) by intravenous injection of sonicated Pg; Pg was deactivated but its endotoxin remained. The mice were fed a high-fat diet and administered sonicated Pg (HFPg) or saline (HFco) injections for 12 weeks. Liver steatosis, glucose metabolism, and gene expression in the liver were evaluated. 16S rRNA gene sequencing with metagenome prediction was performed on the gut microbiota. Compared to HFco mice, HFPg mice exhibited impaired glucose tolerance and insulin resistance along with increased liver steatosis. Liver microarray analysis demonstrated that 1278 genes were differentially expressed between HFco and HFPg mice. Gene set enrichment analysis showed that fatty acid metabolism, hypoxia, and TNFα signaling via NFκB gene sets were enriched in HFPg mice. Although sonicated Pg did not directly reach the gut, it changed the gut microbiota and decreased bacterial diversity in HFPg mice. Metagenome prediction in the gut microbiota showed enriched citrate cycle and carbon fixation pathways in prokaryotes. Overall, intravenous injection of sonicated Pg caused impaired glucose tolerance, insulin resistance, and liver steatosis in mice fed high-fat diets. Thus, blood infusion of Pg contributes to NAFLD and alters the gut microbiota.

5.
Acta Odontol Scand ; 76(6): 433-441, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29334319

ABSTRACT

OBJECTIVE: Growing evidence indicates an association between periodontitis and delivery outcome; however, the mechanism is unclear. This study aimed to investigate the influence of Porphyromonas gingivalis (Pg) infection on delivery outcome in mice. MATERIALS AND METHODS: Bacteremia was induced in pregnant Slc:ICR mice (8 weeks old) by intravenous injection of Pg. Mice were randomly divided into a control group (CO), and those receiving Pg injection at gestational day 1 (GD1), gestational day 15 (GD15) or every day (ED). Delivery outcome, Pg infection, and gene expression in the placenta and umbilical cord were evaluated. RESULTS: Birth weight was lower in the ED and GD15 groups than in the CO group. A remarkable increase in anti-Pg IgG antibody was observed in the ED and GD1 groups, although Pg was not detected in the placenta or umbilical cord. mRNA expression of Tnfα and Il6 in the placenta, and Hif1α in the umbilical cord, was significantly increased in the ED group. Microarray analysis of the umbilical cord revealed increased expression of several genes including Orm1, Mgl2, Rps6ka3 and Trim15 in the ED group. CONCLUSIONS: Pg infection during the third trimester caused low birth weight and inflammation in the placenta and umbilical cord.


Subject(s)
Birth Weight , Periodontitis/metabolism , Placenta/microbiology , Porphyromonas gingivalis/metabolism , Pregnancy, Animal/metabolism , Umbilical Cord/microbiology , Animals , Female , Inflammation/metabolism , Mice , Mice, Inbred ICR , Pregnancy , Tumor Necrosis Factor-alpha/metabolism
6.
Sci Rep ; 7(1): 13950, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29066788

ABSTRACT

Increasing evidence indicates that periodontitis affects non-alcoholic fatty liver disease (NAFLD). We examined the relationship between periodontal bacterial infection and clinical/biochemical parameters in 52 NAFLD patients. Anti-Aggregatibacter actinomycetemcomitans (Aa) antibody titers correlated positively with visceral fat, fasting plasma insulin, and HOMA-IR; and negatively with the liver/spleen ratio. C57BL/6J mice (8-weeks-old) were given Aa or saline (control) for 6 weeks, and were fed either normal chow (NCAa, NCco) or high-fat diet (HFAa and HFco). NCAa and HFAa mice presented impaired glucose tolerance and insulin resistance compared to control mice. HFAa mice showed higher hepatic steatosis than HFco animals. Liver microarray analysis revealed that 266 genes were differentially expressed between NCAa and NCco mice. Upregulated genes in Aa-administrated mice were enriched for glucagon signaling pathway, adipocytokine signaling pathway and insulin resistance. Consistently, plasma glucagon concentration was higher in NCAa mice. In addition, Akt phosphorylation was lower in the liver of NCAa/HFAa than in NCco/HFco mice. Based on 16S rRNA sequencing, Aa administration changed composition of the gut microbiota. Metagenome prediction in gut microbiota showed upregulation of fatty acid biosynthesis and downregulation of fatty acid degradation in Aa-administered mice. Thus, infection with Aa affects NAFLD by altering the gut microbiota and glucose metabolism.


Subject(s)
Aggregatibacter actinomycetemcomitans/physiology , Gastrointestinal Microbiome , Glucose/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology , Aggregatibacter actinomycetemcomitans/immunology , Animals , Body Weight , Female , Humans , Immunoglobulin G/immunology , Insulin Resistance , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...