Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Genes Genet Syst ; 84(3): 233-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19745572

ABSTRACT

The Q locus located on the long arm of chromosome 5A is a key factor in evolution and widespread cultivation of domesticated wheat. The Q locus pleiotropically affects many agronomically important traits including threshability, glume shape and tenacity, rachis fragility and others. Genotyping of the Q locus based on the complex traits is ambiguous due to their multi-genetic control through interactions with the Q locus. To determine the Q locus genotype of wheat accessions possessing A genome, we developed a method based on polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) analysis. The Q and q alleles were clearly distinguished by PCR-RFLP analysis at six conserved single nucleotide polymorphisms in common wheat and wild and cultivated einkorn, emmer and timopheevi wheat. The Q locus genotype of Triticum sinskajae, which is one of the einkorn wheat species and exhibits free-threshing trait, was determined to be qq as expected. This simple PCR-RLFP-based genotyping method should serve as a useful tool in studying the origin of Q and thus wheat evolution after domestication and the following widespread cultivation.


Subject(s)
Genes, Plant/genetics , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Triticum/genetics , Base Sequence , Chromosome Mapping , Chromosomes, Plant , Genotype , Polymorphism, Restriction Fragment Length/genetics , Quantitative Trait Loci/genetics
2.
Genet. mol. biol ; 31(2): 539-546, 2008. ilus, tab
Article in English | LILACS | ID: lil-484994

ABSTRACT

Partial transposase-coding sequences of Mutator-like elements (MULEs) were isolated from a wild einkorn wheat, Triticum urartu, by degenerate PCR. The isolated sequences were classified into a MuDR or Class I clade and divided into two distinct subclasses (subclass I and subclass II). The average pair-wise identity between members of both subclasses was 58.8 percent at the nucleotide sequence level. Sequence diversity of subclass I was larger than that of subclass II. DNA gel blot analysis showed that subclass I was present as low copy number elements in the genomes of all Triticum and Aegilops accessions surveyed, while subclass II was present as high copy number elements. These two subclasses seemed uncapable of recognizing each other for transposition. The number of copies of subclass II elements was much higher in Aegilops with the S, Sl and D genomes and polyploid Triticum species than in diploid Triticum with the A genome, indicating that active transposition occurred in S, Sl and D genomes before polyploidization. DNA gel blot analysis of six species selected from three subfamilies of Poaceae demonstrated that only the tribe Triticeae possessed both subclasses. These results suggest that the differentiation of these two subclasses occurred before or immediately after the establishment of the tribe Triticeae.

SELECTION OF CITATIONS
SEARCH DETAIL