Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Equine Vet Sci ; 133: 105007, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237706

ABSTRACT

A two-year-old Arabian horse presented for abnormal external genitalia and dangerous stallion-like behavior was diagnosed with disorder of sexual development (DSD), also known as intersex/hermaphroditism. Standing 1-stage surgical procedure performed under sedation, and local anesthesia to concurrently eliminate stallion-like behavior, risk of neoplastic transformation of intraabdominal gonads, and to replace ambiguous external genital with a functional, and cosmetically more acceptable anatomy. Step-1) Laparoscopic abdominal exploration and gonadectomy; Step-2) Rudimentary penis resection and perineal urethrostomy. The horse tolerated surgery well (combined surgery time 185 min) with no complications. At macroscopic examination of the gonads, they resembled hypoplastic testis-like tissues. Microscopic examination confirmed presence of seminiferous tubules, Leydig and Sertoli/granulosa cells. Cytogenetic evaluation revealed a 64,XX karyotype, SRY-negative. The stallion-like behavior subsided within days post-operatively. Long-term follow-up revealed the genitoplasty site healed without urine scalding or urethral stricture. The owner satisfaction was excellent and the horse could be used post-surgery as an athlete.


Subject(s)
Disorders of Sex Development , Horse Diseases , Female , Male , Horses , Animals , Case Management , Disorders of Sex Development/genetics , Disorders of Sex Development/surgery , Disorders of Sex Development/veterinary , Gonads , Karyotyping/veterinary , Karyotype , Horse Diseases/surgery
2.
Anat Histol Embryol ; 31(2): 85-98, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12047244

ABSTRACT

An anatomical study of horse lumbrical muscle (Lm) was carried out by light and electron microscopy in combination with immunochemical and cytochemical methods. Paraffin sections were subjected to haematoxylin and eosin (H & E) and Masson's trichrome staining for morphometric analysis. Paraffin sections were also used for immunostaining by anti-PGP 9.5 for reaction with nerve-protein associated-structures, anti-heat-shock protein 70 (hsp 70) for detection of gene expression changes, anti-fast myosin for the determination of muscle fibre types, and for detection of apoptotic gene expression of muscle fibres by the TUNEL method. The distribution of muscle fibre types on frozen sections was also examined by assaying ATPase (pH 4.2). We found that the proximal end of the tendon of the unipennate-shaped Lm binds to the deep digital flexor tendon, and the distal end of the Lm tendon connects to the medial surface of the palmar annular ligament. The Lm was not always present, but when found it varied in length greatly, up to 8 cm (muscle part alone), and weighed less than 1 g. The Lm was white, pale, or reddish in colour depending on the ratio of muscle fibre and connective tissue contents. The semi-tendinized regressive Lm was composed of rich vasculature, peripheral nerves, and nerve-like organs similar to the neuromuscular spindle (NMS). The extrafusal muscle fibres (e-lm) that surround the NMS were replaced with a thick outer capsule of connective tissues (CT) in the Lm nerve-like organ, which we named the neurotendinous capsule (NTC) organ. NTC organs exist alone or as multiple structures (up to eight) surrounded by a common outer capsule at the outermost CT ring. The NTC possesses several intrafusal muscle fibres (ifm) just as the NMS does. That the ifm was associated with nerve endings was confirmed by anti-PGP 9.5 and electron microscopic observation. Some muscle fibres in ifm and e-lm reacted with anti-fast twitch myosin and with anti-hsp 70. The e-lm exhibited at least two fibre types, determined by ATPase (pH 4.2) assay. The ifm exhibited mainly type I (slow twitch) fibres. No apoptotic gene expression was detected in either ifm or e-lm, suggesting the Lm is a vital organ. The degenerating fibres observed in ifm and e-lm indicate that the turnover rate of cytoplasmic components is accelerated. We attribute this phenomenon to the necessity for adaptation to new environmental demands. The surprising finding of tubular aggregates (TAs) in ifm of the NTC organ suggests that the Lm is continuously adapting. Some results related to variation in diameter of the collagen fibrils, isolation of the NTC organ and the myofibrillar protein constituents are also discussed. In conclusion, the so-called regressive Lm has rich vasculature, many peripheral nerves, and newly described NTC organs. The induction of heat-shock protein, lack of apoptotic gene expression in ifm and e-lm fibres, and TA formation in ifm suggest that horse Lm responds to environmental stress through reorganization and/or remodelling of cell constituents. We hypothesize that the horse Lm has lost its original role as a contractile element and changed to another function, likely as a vital nerve organ.


Subject(s)
Horses/anatomy & histology , Muscle, Skeletal/anatomy & histology , Animals , Forelimb , Histocytochemistry/veterinary , Microscopy, Electron/veterinary , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Staining and Labeling
3.
Kitasato Arch Exp Med ; 64(2-3): 149-56, 1991 Sep.
Article in English | MEDLINE | ID: mdl-1811113

ABSTRACT

To elucidate the current status of foal diseases in Japan, clinico-pathological analysis was conducted on 237 foal autopsy cases. As a result, bacterial infection was identified as an important cause of foal death. Most of the bacteria isolated from these cases were ubiquitous, opportunistic, environmental organisms, known to be non-pathogenic to mature animals. Most of cases with bacterial infection were diagnosed as having hypogammaglobulinemia, i.e., failure of passive transfer. In addition, the mean weight of thymuses in foals affected by bacterial infection tended to be lower than that of foals without infection. These findings suggest that the common cause of foal diseases were mainly due to the opportunistic bacterial infections associated with the weakened immune function, serving as precursor to or promotor of infection.


Subject(s)
Horse Diseases/epidemiology , Animals , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/pathology , Bacterial Infections/veterinary , Congenital Abnormalities/epidemiology , Congenital Abnormalities/pathology , Congenital Abnormalities/veterinary , Female , Fractures, Bone/epidemiology , Fractures, Bone/pathology , Fractures, Bone/veterinary , Horse Diseases/microbiology , Horse Diseases/pathology , Horses , Immunoglobulin G/blood , Japan/epidemiology , Male , Muscular Diseases/epidemiology , Muscular Diseases/pathology , Muscular Diseases/veterinary , Organ Size , Pregnancy , Pregnancy Complications, Infectious/veterinary , Thymus Gland/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...