Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 6(11): 1997-2007, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33274277

ABSTRACT

Bioorthogonal correlative light-electron microscopy (B-CLEM) can give a detailed overview of multicomponent biological systems. It can provide information on the ultrastructural context of bioorthogonal handles and other fluorescent signals, as well as information about subcellular organization. We have here applied B-CLEM to the study of the intracellular pathogen Mycobacterium tuberculosis (Mtb) by generating a triply labeled Mtb through combined metabolic labeling of the cell wall and the proteome of a DsRed-expressing Mtb strain. Study of this pathogen in a B-CLEM setting was used to provide information about the intracellular distribution of the pathogen, as well as its in situ response to various clinical antibiotics, supported by flow cytometric analysis of the bacteria, after recovery from the host cell (ex cellula). The RNA polymerase-targeting drug rifampicin displayed the most prominent effect on subcellular distribution, suggesting the most direct effect on pathogenicity and/or viability, while the cell wall synthesis-targeting drugs isoniazid and ethambutol effectively rescued bacterial division-induced loss of metabolic labels. The three drugs combined did not give a more pronounced effect but rather an intermediate response, whereas gentamicin displayed a surprisingly strong additive effect on subcellular distribution.

2.
Chembiochem ; 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29869826

ABSTRACT

The imaging of intracellular pathogens inside host cells is complicated by the low resolution and sensitivity of fluorescence microscopy and by the lack of ultrastructural information to visualize the pathogens. Herein, we present a new method to visualize these pathogens during infection that circumvents these problems: by using a metabolic hijacking approach to bioorthogonally label the intracellular pathogen Salmonella Typhimurium and by using these bioorthogonal groups to introduce fluorophores compatible with stochastic optical reconstruction microscopy (STORM) and placing this in a correlative light electron microscopy (CLEM) workflow, the pathogen can be imaged within its host cell context Typhimurium with a resolution of 20 nm. This STORM-CLEM approach thus presents a new approach to understand these pathogens during infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...