Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 20(5): 3411-3419, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32233490

ABSTRACT

Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work, we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including postprocessing. Under specific conditions, the formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature, and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.

2.
Nanoscale ; 8(33): 15147-51, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27494423

ABSTRACT

Phospholipid membranes of different functionalities were simultaneously assembled on arrays of graphene surfaces in a parallel manner using multi-pen lipid dip-pen nano-lithography. The graphene patch facilitates and restricts the spreading of lipids within itself, obviating the need to scan the writing probes and reducing writing time. Binding studies establish that the lipids retain the functionality.

3.
Bioinspir Biomim ; 11(4): 046009, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27454401

ABSTRACT

Natural surface topographies are often self-similar with hierarchical features at the micro and nanoscale, which may be mimicked to overcome modern tissue engineering and biomaterial design limitations. Specifically, a cell's microenvironment within the human body contains highly optimised, fractal topographical cues, which directs precise cell behaviour. However, recreating biomimetic, fractal topographies in vitro is not a trivial process and a number of fabrication methods have been proposed but often fail to precisely control the spatial resolution of features at different lengths scales and hence, to provide true biomimetic properties. Here, we propose a method of accurately reproducing the self-similar, micro and nanoscale topography of a human biological tissue into a synthetic polymer through an innovative fabrication process. The biological tissue surface was characterised using atomic force microscopy (AFM) to obtain spatial data in X, Y and Z, which was converted into a grayscale 'digital photomask'. As a result of maskless grayscale optical lithography followed by modified deep reactive ion etching and replica molding, we were able to accurately reproduce the fractal topography of acellular dermal matrix (ADM) into polydimethylsiloxane (PDMS). Characterisation using AFM at three different length scales revealed that the nano and micro-topographical features, in addition to the fractal dimension, of native ADM were reproduced in PDMS. In conclusion, it has been shown that the fractal topography of biological surfaces can be mimicked in synthetic materials using the novel fabrication process outlined, which may be applied to significantly enhance medical device biocompatibility and performance.


Subject(s)
Acellular Dermis , Fractals , Nanostructures , Tissue Engineering/methods , Biocompatible Materials , Biomimetics , Humans , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Silicones , Surface Properties
4.
Biomaterials ; 52: 88-102, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25818416

ABSTRACT

Reproducing extracellular matrix topographical cues, such as those present within acellular dermal matrix (ADM), in synthetic implant surfaces, may augment cellular responses, independent of surface chemistry. This could lead to enhanced implant integration and performance while reducing complications. In this work, the hierarchical micro and nanoscale features of ADM were accurately and reproducibly replicated in polydimethylsiloxane (PDMS), using an innovative maskless 3D grayscale fabrication process not previously reported. Human breast derived fibroblasts (n=5) were cultured on PDMS surfaces and compared to commercially available smooth and textured silicone implant surfaces, for up to one week. Cell attachment, proliferation and cytotoxicity, in addition to immunofluorescence staining, SEM imaging, qRT-PCR and cytokine array were performed. ADM PDMS surfaces promoted cell adhesion, proliferation and survival (p=<0.05), in addition to increased focal contact formation and spread fibroblast morphology when compared to commercially available implant surfaces. PCNA, vinculin and collagen 1 were up-regulated in fibroblasts on biomimetic surfaces while IL8, TNFα, TGFß1 and HSP60 were down-regulated (p=<0.05). A reduced inflammatory cytokine response was also observed (p=<0.05). This study represents a novel approach to the development of functionalised biomimetic prosthetic implant surfaces which were demonstrated to significantly attenuate the acute in vitro foreign body reaction to silicone.


Subject(s)
Biomimetic Materials/chemistry , Breast Implants/adverse effects , Breast/cytology , Dimethylpolysiloxanes/chemistry , Fibroblasts/cytology , Foreign-Body Reaction/etiology , Adult , Biomimetics/methods , Breast/immunology , Cell Adhesion , Cells, Cultured , Female , Fibroblasts/immunology , Foreign-Body Reaction/immunology , Humans , Inflammation/etiology , Inflammation/immunology , Middle Aged , Silicones/chemistry , Surface Properties
5.
Nano Lett ; 14(4): 1762-8, 2014.
Article in English | MEDLINE | ID: mdl-24605932

ABSTRACT

We realize the coupling of carbon nanotubes as a one-dimensional model system to near-field cavities for plasmon-enhanced Raman scattering. Directed dielectrophoretic assembly places single-walled carbon nanotubes precisely into the gap of gold nanodimers. The plasmonic cavities enhance the Raman signal of a small nanotube bundle by a factor of 10(3). The enhanced signal arises exclusively from tube segments within the cavity as we confirm by spatially resolved Raman measurements. Through the energy and polarization of the excitation we address the extrinsic plasmonic and the intrinsic nanotube optical response independently. For all incident light polarizations, the nanotube Raman features arise from fully symmetric vibrations only. We find strong evidence that the signal enhancement depends on the orientation of the carbon nanotube relative to the cavity axis.

6.
Nat Commun ; 4: 2591, 2013.
Article in English | MEDLINE | ID: mdl-24107937

ABSTRACT

The application of graphene in sensor devices depends on the ability to appropriately functionalize the pristine graphene. Here we show the direct writing of tailored phospholipid membranes on graphene using dip-pen nanolithography. Phospholipids exhibit higher mobility on graphene compared with the commonly used silicon dioxide substrate, leading to well-spread uniform membranes. Dip-pen nanolithography allows for multiplexed assembly of phospholipid membranes of different functionalities in close proximity to each other. The membranes are stable in aqueous environments and we observe electronic doping of graphene by charged phospholipids. On the basis of these results, we propose phospholipid membranes as a route for non-covalent immobilization of various functional groups on graphene for applications in biosensing and biocatalysis. As a proof of principle, we demonstrate the specific binding of streptavidin to biotin-functionalized membranes. The combination of atomic force microscopy and binding experiments yields a consistent model for the layer organization within phospholipid stacks on graphene.


Subject(s)
Biomimetic Materials/chemistry , Graphite/chemistry , Membrane Lipids/chemistry , Phosphatidylcholines/chemistry , Printing/methods , Biocatalysis , Biosensing Techniques , Biotin/chemistry , Membranes, Artificial , Microscopy, Atomic Force , Nanotechnology , Printing/instrumentation , Protein Binding , Streptavidin/chemistry
7.
Nano Lett ; 13(1): 301-8, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23215014

ABSTRACT

We characterize plasmonic enhancement in a hotspot between two Au nanodisks using Raman scattering of graphene. Single layer graphene is suspended across the dimer cavity and provides an ideal two-dimensional test material for the local near-field distribution. We detect a Raman enhancement of the order of 10(3) originating from the cavity. Spatially resolved Raman measurements reveal a near-field localization one order of magnitude smaller than the wavelength of the excitation, which can be turned off by rotating the polarization of the excitation. The suspended graphene is under tensile strain. The resulting phonon mode softening allows for a clear identification of the enhanced signal compared to unperturbed graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...