Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Braz J Med Biol Res ; 54(7): e10579, 2021.
Article in English | MEDLINE | ID: mdl-34008754

ABSTRACT

NOTCH pathway proteins, including the transcriptional factor HES1, play crucial roles in the development of the inner ear by means of the lateral inhibition mechanism, in which supporting cells have their phenotype preserved while they are prevented from becoming hair cells. Genetic manipulation of this pathway has been demonstrated to increase hair cell number. The present study aimed to investigate gene expression effects in hair cells and supporting cells after Hes1-shRNA lentivirus transduction in organotypic cultures of the organ of Corti from postnatal-day-3 mice. Forty-eight hours after in vitro knockdown, Hes1 gene expression was reduced at both mRNA and protein levels. Myo7a (hair cell marker) and Sox2 (progenitor cell marker) mRNA levels also significantly increased. The modulation of gene expression in the organ of Corti upon Hes1 knockdown is consistent with cell phenotypes related to lateral inhibition mechanism interference in the inner ear. The lentivirus-based expression of Hes1-shRNA is a valuable strategy for genetic interference in the organ of Corti and for future evaluation of its efficacy in protocols aiming at the regeneration of hair cells in vivo.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cochlea , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Hair Cells, Auditory , Mice , Organ of Corti , Receptors, Notch , Transcription Factor HES-1/genetics
2.
Braz. j. med. biol. res ; 54(7): e10579, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249313

ABSTRACT

NOTCH pathway proteins, including the transcriptional factor HES1, play crucial roles in the development of the inner ear by means of the lateral inhibition mechanism, in which supporting cells have their phenotype preserved while they are prevented from becoming hair cells. Genetic manipulation of this pathway has been demonstrated to increase hair cell number. The present study aimed to investigate gene expression effects in hair cells and supporting cells after Hes1-shRNA lentivirus transduction in organotypic cultures of the organ of Corti from postnatal-day-3 mice. Forty-eight hours after in vitro knockdown, Hes1 gene expression was reduced at both mRNA and protein levels. Myo7a (hair cell marker) and Sox2 (progenitor cell marker) mRNA levels also significantly increased. The modulation of gene expression in the organ of Corti upon Hes1 knockdown is consistent with cell phenotypes related to lateral inhibition mechanism interference in the inner ear. The lentivirus-based expression of Hes1-shRNA is a valuable strategy for genetic interference in the organ of Corti and for future evaluation of its efficacy in protocols aiming at the regeneration of hair cells in vivo.


Subject(s)
Animals , Rats , Cochlea , Basic Helix-Loop-Helix Transcription Factors/genetics , Organ of Corti , Cell Differentiation , Receptors, Notch , Transcription Factor HES-1/genetics , Hair Cells, Auditory
3.
Braz J Med Biol Res ; 49(4): e5064, 2016.
Article in English | MEDLINE | ID: mdl-27007652

ABSTRACT

In mammals, damage to sensory receptor cells (hair cells) of the inner ear results in permanent sensorineural hearing loss. Here, we investigated whether postnatal mouse inner ear progenitor/stem cells (mIESCs) are viable after transplantation into the basal turns of neomycin-injured guinea pig cochleas. We also examined the effects of mIESC transplantation on auditory functions. Eight adult female Cavia porcellus guinea pigs (250-350 g) were deafened by intratympanic neomycin delivery. After 7 days, the animals were randomly divided in two groups. The study group (n=4) received transplantation of LacZ-positive mIESCs in culture medium into the scala tympani. The control group (n=4) received culture medium only. At 2 weeks after transplantation, functional analyses were performed by auditory brainstem response measurement, and the animals were sacrificed. The presence of mIESCs was evaluated by immunohistochemistry of sections of the cochlea from the study group. Non-parametric tests were used for statistical analysis of the data. Intratympanic neomycin delivery damaged hair cells and increased auditory thresholds prior to cell transplantation. There were no significant differences between auditory brainstem thresholds before and after transplantation in individual guinea pigs. Some mIESCs were observed in all scalae of the basal turns of the injured cochleas, and a proportion of these cells expressed the hair cell marker myosin VIIa. Some transplanted mIESCs engrafted in the cochlear basilar membrane. Our study demonstrates that transplanted cells survived and engrafted in the organ of Corti after cochleostomy.


Subject(s)
Hair Cells, Auditory, Inner/transplantation , Hearing Loss, Sensorineural/surgery , Organ of Corti/surgery , Stem Cell Transplantation/methods , Stem Cells , Animals , Auditory Threshold , Cell Survival , Cells, Cultured , Evoked Potentials, Auditory, Brain Stem , Female , Guinea Pigs , Immunohistochemistry , Mice, Inbred BALB C , Neomycin , Protein Synthesis Inhibitors , Reproducibility of Results , Treatment Outcome
4.
Clin Genet ; 89(4): 473-477, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26456090

ABSTRACT

Genetic heterogeneity has made the identification of genes related to hearing impairment a challenge. In the absence of a clear phenotypic aetiology, recurrence risk estimates are often based on family segregation and may be imprecise. We profiled by oligonucleotide array-CGH patients presenting non-syndromic hearing loss with presumptive autosomal recessive (n = 50) or autosomal dominant (n = 50) patterns of inheritance. Rare copy number variants (CNVs) were detected in 12 probands; four of the detected CNVs comprised genes previously associated with hearing loss (POU4F3, EYA4, USH2A, and BCAP31) and were considered causative, stressing the contribution of genomic imbalance to non-syndromic deafness. In six cases, segregation of the CNVs in pedigrees excluded them as causative. In one case, segregation could not be investigated, while in another case, a point mutation likely explains the phenotype. These findings show that the presumptive patterns of inheritance were incorrect in at least two cases, thereby impacting genetic counselling. In addition, we report the first duplication reciprocal to the rare ABCD1, BCAP31, and SLC6A8 contiguous deletion syndrome; as with most microduplication syndromes, the associated phenotype is much milder than the respective microdeletion and, in this case, was restricted to hearing impairment.

5.
Braz. j. med. biol. res ; 49(4): e5064, 2016. tab, graf
Article in English | LILACS | ID: biblio-951670

ABSTRACT

In mammals, damage to sensory receptor cells (hair cells) of the inner ear results in permanent sensorineural hearing loss. Here, we investigated whether postnatal mouse inner ear progenitor/stem cells (mIESCs) are viable after transplantation into the basal turns of neomycin-injured guinea pig cochleas. We also examined the effects of mIESC transplantation on auditory functions. Eight adult female Cavia porcellus guinea pigs (250-350g) were deafened by intratympanic neomycin delivery. After 7 days, the animals were randomly divided in two groups. The study group (n=4) received transplantation of LacZ-positive mIESCs in culture medium into the scala tympani. The control group (n=4) received culture medium only. At 2 weeks after transplantation, functional analyses were performed by auditory brainstem response measurement, and the animals were sacrificed. The presence of mIESCs was evaluated by immunohistochemistry of sections of the cochlea from the study group. Non-parametric tests were used for statistical analysis of the data. Intratympanic neomycin delivery damaged hair cells and increased auditory thresholds prior to cell transplantation. There were no significant differences between auditory brainstem thresholds before and after transplantation in individual guinea pigs. Some mIESCs were observed in all scalae of the basal turns of the injured cochleas, and a proportion of these cells expressed the hair cell marker myosin VIIa. Some transplanted mIESCs engrafted in the cochlear basilar membrane. Our study demonstrates that transplanted cells survived and engrafted in the organ of Corti after cochleostomy.


Subject(s)
Animals , Female , Organ of Corti/surgery , Stem Cells , Stem Cell Transplantation/methods , Hair Cells, Auditory, Inner/transplantation , Hearing Loss, Sensorineural/surgery , Auditory Threshold , Immunohistochemistry , Protein Synthesis Inhibitors , Neomycin , Cell Survival , Cells, Cultured , Reproducibility of Results , Evoked Potentials, Auditory, Brain Stem , Treatment Outcome , Guinea Pigs , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...