Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 285(6): R1439-45, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12969873

ABSTRACT

Compared with other rat strains, the inbred FOK rat is extremely heat tolerant. This increased heat tolerance is due largely to the animal's enhanced saliva spreading abilities. The aims of the present study were to 1) quantify the heat tolerance capacity of FOK rats and 2) determine the regulatory mode of the enhanced salivary cooling in these animals. Various strains of rats were acutely exposed to heat. In the heat-intolerant strains, saliva spreading was insufficient and the core temperature (Tc) rose rapidly. In contrast, FOK rats maintained an elevated Tc plateau (39.5 +/- 0.7 degrees C) for 5-6 h over a wide range of ambient temperatures (Ta) (37.5-42.5 degrees C). In hot environments the FOK rats secreted copious amounts of saliva and spread it over more than the entire ventral body surface. FOK rats had a low Tc threshold for salivation, and the salivation rate increased linearly in proportion to the Tc deviation from the threshold. No strain difference or temperature effect was observed in the saliva secretion rate from in vitro submandibular glands perfused by sufficient doses of ACh. These results suggest that 1) the ability of FOK rats to maintain a moderate steady-state hyperthermia (39.5 +/- 0.7 degrees C) over a wide Ta range is enabled by a lowered threshold Tc for salivation and functional negative-feedback control of saliva secretion and 2) strain differences in ability to endure heat stress are mainly attributable to changes in the thermoregulatory control system rather than altered secretory abilities of the salivary glands.


Subject(s)
Adaptation, Physiological/physiology , Body Temperature Regulation/physiology , Heat Stress Disorders/physiopathology , Salivation/physiology , Animals , Behavior, Animal , Heat Stress Disorders/genetics , Hot Temperature , In Vitro Techniques , Male , Rats , Rats, Inbred ACI , Rats, Sprague-Dawley , Species Specificity , Submandibular Gland/metabolism , Submandibular Gland/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...