Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 19(1): 249, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36203181

ABSTRACT

BACKGROUND: Trigeminal ganglia (TG) neurons are the main site of lifelong latent herpes simplex virus type 1 (HSV-1) infection. T-cells in ganglia contribute to long-term control of latent HSV-1 infection, but it is unclear whether these cells are bona fide tissue-resident memory T-cells (TRM). We optimized the processing of human post-mortem nervous tissue to accurately phenotype T-cells in human TG ex vivo and in situ. METHODS: Peripheral blood mononuclear cells (PBMC; 5 blood donors) were incubated with several commercial tissue digestion enzyme preparations to determine off-target effect on simultaneous detection of 15 specific T-cell subset markers by flow cytometry. Next, optimized enzymatic digestion was applied to ex vivo phenotype T-cells in paired PBMC, normal appearing white matter (NAWM) and TG of 8 deceased brain donors obtained < 9 h post-mortem by flow cytometry. Finally, the phenotypic and functional markers, and spatial orientation of T-cells in relation to neuronal somata, were determined in TG tissue sections of five HSV-1-latently infected individuals by multiparametric in situ analysis. RESULTS: Collagenase IV digestion of human nervous tissue was most optimal to obtain high numbers of viable T-cells without disrupting marker surface expression. Compared to blood, majority T-cells in paired NAWM and TG were effector memory T-cells expressing the canonical TRM markers CD69, CXCR6 and the immune checkpoint marker PD1, and about half co-expressed CD103. A trend of relatively higher TRM frequencies were detected in TG of latently HSV-1-infected compared to HSV-1 naïve individuals. Subsequent in situ analysis of latently HSV-1-infected TG showed the presence of cytotoxic T-cells (TIA-1+), which occasionally showed features of proliferation (KI-67+) and activation (CD137+), but without signs of degranulation (CD107a+) nor damage (TUNEL+) of TG cells. Whereas majority T-cells expressed PD-1, traits of T-cell senescence (p16INK4a+) were not detected. CONCLUSIONS: The human TG represents an immunocompetent environment in which both CD4 and CD8 TRM are established and retained. Based on our study insights, we advocate for TRM-targeted vaccine strategies to bolster local HSV-1-specific T-cell immunity, not only at the site of recurrent infection but also at the site of HSV-1 latency.


Subject(s)
Herpes Simplex , Herpesviridae Infections , Herpesvirus 1, Human , CD8-Positive T-Lymphocytes , Humans , Ki-67 Antigen/metabolism , Leukocyte Common Antigens/metabolism , Leukocytes, Mononuclear , Memory T Cells , Programmed Cell Death 1 Receptor/metabolism , Trigeminal Ganglion
2.
Sci Immunol ; 7(70): eabf9393, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35394815

ABSTRACT

The ability of the adaptive immune system to form memory is key to providing protection against secondary infections. Resident memory T cells (TRM) are specialized T cell populations that reside within tissue sites where they await reencounter with their cognate antigen. TRM are distinct from circulating memory cells, including central and effector memory T cells, both functionally and transcriptionally. Since the discovery of TRM, most research has focused on CD8+ TRM, despite that CD4+ TRM are also abundant in most tissues. In the past few years, more evidence has emerged that CD4+ TRM can contribute both protective and pathogenic roles in disease. A complexity inherent to the CD4+ TRM field is the ability of CD4+ T cells to polarize into a multitude of distinct subsets and recognize not only viruses and intracellular bacteria but also extracellular bacteria, fungi, and parasites. In this review, we outline the key features of CD4+ TRM in health and disease, including their contributions to protection against SARS-CoV-2 and potential contributions to immunopathology associated with COVID-19.


Subject(s)
COVID-19 , Immunologic Memory , CD4-Positive T-Lymphocytes , Humans , Memory T Cells , SARS-CoV-2
3.
Eur J Immunol ; 50(12): 1998-2012, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33073359

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. Understanding the immune response that provides specific immunity but may also lead to immunopathology is crucial for the design of potential preventive and therapeutic strategies. Here, we characterized and quantified SARS-CoV-2-specific immune responses in patients with different clinical courses. Compared to individuals with a mild clinical presentation, CD4+ T-cell responses were qualitatively impaired in critically ill patients. Strikingly, however, in these patients the specific IgG antibody response was remarkably strong. Furthermore, in these critically ill patients, a massive influx of circulating T cells into the lungs was observed, overwhelming the local T-cell compartment, and indicative of vascular leakage. The observed disparate T- and B-cell responses could be indicative of a deregulated immune response in critically ill COVID-19 patients.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Adult , Aged , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/pathology , COVID-19/pathology , Female , Humans , Male , Middle Aged , Severity of Illness Index
4.
Int Arch Allergy Immunol ; 181(12): 908-918, 2020.
Article in English | MEDLINE | ID: mdl-32814335

ABSTRACT

INTRODUCTION: Cow's milk allergy (CMA) is one of the most common food allergies especially early in life. A mixture of nondigestible short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and pectin-derived acidic-oligosaccharides (GFA) may reduce allergy development and allergic symptoms in murine CMA. Recently, vitamin D (VitD) has been suggested to have beneficial effects in reducing allergy as well. OBJECTIVE: In this study, the immune modulatory effect on allergy prevention using the combination of GFA and VitD was investigated. METHODS: Female C3H/HeOuJ mice were fed a control or GFA-containing diet with depleted, standard (1,000 IU/kg), or supplemented (5,000 IU/kg) VitD content for 2 weeks before and during whey sensitization (n = 10-15). Mice were sensitized 5 times intragastrically with PBS as a control, whey as cow's milk allergen, and/or cholera toxin as adjuvant on a weekly interval. One week after the last sensitization, mice were intradermally challenged in both ear pinnae and orally with whey, subsequently the acute allergic skin response and shock symptoms were measured. After 18 h, terminal blood samples, mesenteric lymph nodes, and spleens were collected. Whey-specific immunoglobulin (Ig) E and IgG1 levels were measured by means of ELISA. T cell subsets and dendritic cells (DCs) were studied using flow cytometry. RESULTS: Additional VitD supplementation did not lower the allergic symptoms compared to the standard VitD diet. CMA mice fed the GFA diet supplemented with VitD (GFA VitD+) significantly decreased the acute allergic skin response of whey sensitized mice when compared to the CMA mice fed VitD (VitD+) group (p < 0.05). The effect of GFA was not improved by extra VitD supplementation even though the CMA mice fed the GFA VitD+ diet had a significantly increased percentage of CD103+ DCs compared to the VitD+ group (p < 0.05). The VitD-deprived mice showed a high percentage of severe shock and many reached the humane endpoint; therefore, these groups were not further analyzed. CONCLUSIONS: High-dose VitD supplementation in mice does not protect against CMA development in the presence or absence of GFA.


Subject(s)
Dendritic Cells/immunology , Milk Hypersensitivity/diet therapy , Skin/pathology , T-Lymphocytes, Regulatory/immunology , Vitamin D/therapeutic use , Allergens/immunology , Animals , Cattle , Diet , Dietary Supplements , Disease Models, Animal , Female , Humans , Immunoglobulin E/metabolism , Mice , Mice, Inbred C3H , Milk/immunology , Oligosaccharides/therapeutic use
5.
Immunol Lett ; 222: 73-79, 2020 06.
Article in English | MEDLINE | ID: mdl-32259529

ABSTRACT

Follicular helper CD4+ T-cells (Tfh) control humoral immunity by driving affinity maturation and isotype-switching of activated B-cells. Tfh localize within B-cell follicles and, upon encounter with cognate antigen, drive B-cell selection in germinal centers (GCs) as GC-Tfh. Tfh functionality is controlled by Foxp3-expressing Tfh, which are known as regulatory T follicular cells (Tfr). Thus far, it remains unclear which factors determine the balance between these functionally opposing follicular T-cell subsets. Here, we demonstrate in human and mouse that Tfh and GC-Tfh, as well as their regulatory counterparts, express glucocorticoid-induced TNF receptor related protein (GITR) on their surface. This costimulatory molecule not only helps to identify follicular T-cell subsets, but also increases the ratio of Tfh vs. Tfr, both within and outside the GC. Correspondingly, GITR triggering increases the number of IL-21 producing CD4+ T-cells, which also produce more IFN-γ and IL-10. The latter are known switch factors for IgG2c and IgG1, respectively, which corresponds to a concomitant increase in IgG2c and IgG1 production upon GITR-mediated costimulation. These results demonstrate that GITR can skew the functional balance between Tfh and Tfr, which offers new therapeutic possibilities in steering humoral immunity.


Subject(s)
Glucocorticoid-Induced TNFR-Related Protein/genetics , Immunity, Humoral , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Cytokines/metabolism , Female , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Regulation , Germinal Center/immunology , Germinal Center/metabolism , Glucocorticoid-Induced TNFR-Related Protein/metabolism , Humans , Immunoglobulin Class Switching/genetics , Male , Mice
6.
Eur J Immunol ; 49(6): 853-872, 2019 06.
Article in English | MEDLINE | ID: mdl-30891737

ABSTRACT

BM has been put forward as a major reservoir for memory CD8+  T cells. In order to fulfill that function, BM should "store" memory CD8+ T cells, which in biological terms would require these "stored" memory cells to be in disequilibrium with the circulatory pool. This issue is a matter of ongoing debate. Here, we unequivocally demonstrate that murine and human BM harbors a population of tissue-resident memory CD8+ T (TRM ) cells. These cells develop against various pathogens, independently of BM infection or local antigen recognition. BM CD8+ TRM cells share a transcriptional program with resident lymphoid cells in other tissues; they are polyfunctional cytokine producers and dependent on IL-15, Blimp-1, and Hobit. CD8+ TRM cells reside in the BM parenchyma, but are in close contact with the circulation. Moreover, this pool of resident T cells is not size-restricted and expands upon peripheral antigenic re-challenge. This works extends the role of the BM in the maintenance of CD8+ T cell memory to include the preservation of an expandable reservoir of functional, non-recirculating memory CD8+ T cells, which develop in response to a large variety of peripheral antigens.


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , T-Lymphocyte Subsets/immunology , Animals , Humans , Mice , Mice, Inbred C57BL
7.
Front Immunol ; 9: 2654, 2018.
Article in English | MEDLINE | ID: mdl-30505306

ABSTRACT

Resident memory T cells (TRM) inhabit peripheral tissues and are critical for protection against localized infections. Recently, it has become evident that CD103+ TRM are not only important in combating secondary infections, but also for the elimination of tumor cells. In several solid cancers, intratumoral CD103+CD8+ tumor infiltrating lymphocytes (TILs), with TRM properties, are a positive prognostic marker. To better understand the role of TRM in tumors, we performed a detailed characterization of CD8+ and CD4+ TIL phenotype and functional properties in non-small cell lung cancer (NSCLC). Frequencies of CD8+ and CD4+ T cell infiltrates in tumors were comparable, but we observed a sharp contrast in TRM ratios compared to surrounding lung tissue. The majority of both CD4+ and CD8+ TILs expressed CD69 and a subset also expressed CD103, both hallmarks of TRM. While CD103+CD8+ T cells were enriched in tumors, CD103+CD4+ T cell frequencies were decreased compared to surrounding lung tissue. Furthermore, CD103+CD4+ and CD103+CD8+ TILs showed multiple characteristics of TRM, such as elevated expression of CXCR6 and CD49a, and decreased expression of T-bet and Eomes. In line with the immunomodulatory role of the tumor microenvironment, CD8+ and CD4+ TILs expressed high levels of inhibitory receptors 2B4, CTLA-4, and PD-1, with the highest levels found on CD103+ TILs. Strikingly, CD103+CD4+ TILs were the most potent producers of TNF-α and IFN-γ, while other TIL subsets lacked such cytokine production. Whereas, CD103+CD4+PD-1low TILs produced the most effector cytokines, CD103+CD4+PD-1++ and CD69+CD4+PD-1++ TILs produced CXCL13. Furthermore, a large proportion of TILs expressed co-stimulatory receptors CD27 and CD28, unlike lung TRM, suggesting a less differentiated phenotype. Agonistic triggering of these receptors improved cytokine production of CD103+CD4+ and CD69+CD8+ TILs. Our findings thus provide a rationale to target CD103+CD4+ TILs and add co-stimulation to current therapies to improve the efficacy of immunotherapies and cancer vaccines.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Immunologic Memory/genetics , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Phenotype , Tumor Microenvironment/immunology , Aged , Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Cytokines/metabolism , Female , Granzymes/metabolism , Humans , Integrin alpha Chains/metabolism , Integrin alpha1/metabolism , Lung/immunology , Lung Neoplasms/metabolism , Male , Middle Aged , Prognosis , Programmed Cell Death 1 Receptor/metabolism , Receptors, CXCR6/metabolism
8.
Eur J Immunol ; 48(10): 1644-1662, 2018 10.
Article in English | MEDLINE | ID: mdl-30051906

ABSTRACT

CD8 T cells acquire cytotoxic molecules including granzyme B during effector differentiation. Both tissue-resident memory CD8 T cells (Trm) and circulating CD45RA+ effector-type T cells (Temra) cells have the ability to retain granzyme B protein expression into the memory phase, but it is unclear how this persistence of cytolytic activity is regulated during steady state. Previously, we have described that the transcriptional regulators Hobit and Blimp-1 have overlapping target genes that include granzyme B, but their impact on the regulation of cytotoxicity in Trm and Temra cells during homeostasis has remained unclear. We examined the expression regulation of Hobit and Blimp-1 in murine and human CD8 T-cells to determine their timeframe of activity. While Blimp-1 mRNA was expressed throughout effector and memory T cells, Blimp-1 protein, was only transiently expressed during the effector stage. In contrast, Hobit mRNA and protein expression was stably maintained during quiescence, but downregulated after activation. Notably, Blimp-1 was required for expression of granzyme B in murine effector T cells and Trm, while Hobit specifically regulated granzyme B in murine Trm during the memory phase. These findings suggest that Blimp-1 initiates cytotoxic effector function and that Hobit maintains cytotoxicity in a deployment-ready modus in Trm.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Positive Regulatory Domain I-Binding Factor 1/genetics , Transcription Factors/genetics , Animals , Cells, Cultured , Gene Expression Regulation/immunology , Granzymes/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/immunology , Positive Regulatory Domain I-Binding Factor 1/immunology , Transcription Factors/immunology , Transcription Factors/metabolism
9.
Cell Rep ; 20(12): 2906-2920, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28889989

ABSTRACT

After exiting the thymus, Foxp3+ regulatory T (Treg) cells undergo further differentiation in the periphery, resulting in the generation of mature, fully suppressive effector (e)Treg cells in a process dependent on TCR signaling and the transcription factor IRF4. Here, we show that tumor necrosis factor receptor superfamily (TNFRSF) signaling plays a crucial role in the development and maintenance of eTreg cells. TNFRSF signaling activated the NF-κB transcription factor RelA, which was required to maintain eTreg cells in lymphoid and non-lymphoid tissues, including RORγt+ Treg cells in the small intestine. In response to TNFRSF signaling, RelA regulated basic cellular processes, including cell survival and proliferation, but was dispensable for IRF4 expression or DNA binding, indicating that both pathways operated independently. Importantly, mutations in the RelA binding partner NF-κB1 compromised eTreg cells in humans, suggesting that the TNFRSF-NF-κB axis was required in a non-redundant manner to maintain eTreg cells in mice and humans.


Subject(s)
Lymphoid Tissue/metabolism , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/metabolism , Animals , Cell Differentiation , Cell Survival , Homeostasis , Humans , Interferon Regulatory Factors/metabolism , Intestines/cytology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Transcription Factor RelA/metabolism
10.
Front Immunol ; 8: 325, 2017.
Article in English | MEDLINE | ID: mdl-28392788

ABSTRACT

The T cell lineage is commonly divided into CD4-expressing helper T cells that polarize immune responses through cytokine secretion and CD8-expressing cytotoxic T cells that eliminate infected target cells by virtue of the release of cytotoxic molecules. Recently, a population of CD4+ T cells that conforms to the phenotype of cytotoxic CD8+ T cells has received increased recognition. These cytotoxic CD4+ T cells display constitutive expression of granzyme B and perforin at the protein level and mediate HLA class II-dependent killing of target cells. In humans, this cytotoxic profile is found within the human cytomegalovirus (hCMV)-specific, but not within the influenza- or Epstein-Barr virus-specific CD4+ T cell populations, suggesting that, in particular, hCMV infection induces the formation of cytotoxic CD4+ T cells. We have previously described that the transcription factor Homolog of Blimp-1 in T cells (Hobit) is specifically upregulated in CD45RA+ effector CD8+ T cells that arise after hCMV infection. Here, we describe the expression pattern of Hobit in human CD4+ T cells. We found Hobit expression in cytotoxic CD4+ T cells and accumulation of Hobit+ CD4+ T cells after primary hCMV infection. The Hobit+ CD4+ T cells displayed highly overlapping characteristics with Hobit+ CD8+ T cells, including the expression of cytotoxic molecules, T-bet, and CX3CR1. Interestingly, γδ+ T cells that arise after hCMV infection also upregulate Hobit expression and display a similar effector phenotype as cytotoxic CD4+ and CD8+ T cells. These findings suggest a shared differentiation pathway in CD4+, CD8+, and γδ+ T cells that may involve Hobit-driven acquisition of long-lived cytotoxic effector function.

12.
Nat Immunol ; 17(12): 1467-1478, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27776108

ABSTRACT

Tissue-resident memory T cells (TRM cells) in the airways mediate protection against respiratory infection. We characterized TRM cells expressing integrin αE (CD103) that reside within the epithelial barrier of human lungs. These cells had specialized profiles of chemokine receptors and adhesion molecules, consistent with their unique localization. Lung TRM cells were poised for rapid responsiveness by constitutive expression of deployment-ready mRNA encoding effector molecules, but they also expressed many inhibitory regulators, suggestive of programmed restraint. A distinct set of transcription factors was active in CD103+ TRM cells, including Notch. Genetic and pharmacological experiments with mice revealed that Notch activity was required for the maintenance of CD103+ TRM cells. We have thus identified specialized programs underlying the residence, persistence, vigilance and tight control of human lung TRM cells.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Immunologic Memory , Influenza A Virus, H3N2 Subtype/immunology , Lung/immunology , Orthomyxoviridae Infections/immunology , Receptor, Notch1/metabolism , Receptor, Notch2/metabolism , Respiratory Tract Infections/immunology , Animals , Antigens, CD/metabolism , Cells, Cultured , Female , Humans , Integrin alpha Chains/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Receptor, Notch1/genetics , Receptor, Notch2/genetics
13.
Int J Mol Sci ; 17(3): 343, 2016 Mar 05.
Article in English | MEDLINE | ID: mdl-26959014

ABSTRACT

The earliest studies in the late 19th century on Streptococcus pneumoniae (S. pneumoniae) carriage used saliva as the primary specimen. However, interest in saliva declined after the sensitive mouse inoculation method was replaced by conventional culture, which made isolation of pneumococci from the highly polymicrobial oral cavity virtually impossible. Here, we tested the feasibility of using dried saliva spots (DSS) for studies on pneumococcal carriage. Saliva samples from children and pneumococcus-spiked saliva samples from healthy adults were applied to paper, dried, and stored, with and without desiccant, at temperatures ranging from -20 to 37 °C for up to 35 days. DNA extracted from DSS was tested with quantitative-PCR (qPCR) specifically for S. pneumoniae. When processed immediately after drying, the quantity of pneumococcal DNA detected in spiked DSS from adults matched the levels in freshly spiked raw saliva. Furthermore, pneumococcal DNA was stable in DSS stored with desiccant for up to one month over a broad range of temperatures. There were no differences in the results when spiking saliva with varied pneumococcal strains. The collection of saliva can be a particularly useful in surveillance studies conducted in remote settings, as it does not require trained personnel, and DSS are resilient to various transportation conditions.


Subject(s)
Carrier State/diagnosis , Saliva/microbiology , Specimen Handling/methods , Streptococcus pneumoniae/isolation & purification , Child , DNA, Bacterial/genetics , Desiccation , Humans , Population Surveillance , Real-Time Polymerase Chain Reaction , Saliva/chemistry , Streptococcus pneumoniae/genetics
14.
Arch Microbiol ; 197(6): 761-72, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25837473

ABSTRACT

The purpose of this study was to identify the role of the cell envelope stress-sensing systems BaeSR and CpxARP in regulation of multidrug efflux and exopolysaccharide synthesis in Erwinia amylovora. We have previously reported that BaeR activates transcription of the RND-type efflux pumps AcrD and MdtABC. In this study, we found that a cpxR-deficient mutant was highly susceptible to ß-lactams, aminoglycosides and lincomycin, whereas a baeR mutant showed no change in antimicrobial sensitivity. However, overexpression of BaeR in a mutant lacking the major RND pump AcrB increased resistance of E. amylovora to several compounds that are not substrates of AcrD or MdtABC. Furthermore, we observed that overexpression of BaeR significantly increased amylovoran production. Moreover, the expression of RND-type efflux pumps was changed in regulatory mutants of exopolysaccharide production. Our data suggest that BaeSR and CpxARP regulate additional mechanisms, beside efflux, which are responsible for antimicrobial resistance of E. amylovora.


Subject(s)
Bacterial Proteins/physiology , Biological Transport/physiology , Erwinia amylovora/physiology , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Cell Wall/metabolism , Drug Resistance, Bacterial , Erwinia amylovora/drug effects , Lincomycin/pharmacology , Membrane Transport Proteins/metabolism , Superinfection , Trans-Activators/physiology , beta-Lactams/pharmacology
15.
PLoS One ; 10(3): e0119875, 2015.
Article in English | MEDLINE | ID: mdl-25789854

ABSTRACT

Incidence of pneumococcal disease is disproportionally high in infants and elderly. Nasopharyngeal colonisation by Streptococcus pneumoniae is considered a prerequisite for disease but unlike in children, carriage in elderly is rarely detected. Here, we tested for S. pneumoniae in nasopharyngeal and saliva samples collected from community-dwelling elderly with influenza-like-illness (ILI). Trans-nasal nasopharyngeal, trans-oral nasopharyngeal and saliva samples (n = 270 per sample type) were collected during winter/spring 2011/2012 from 135 persons aged 60-89 at onset of ILI and 7-9 weeks later following recovery. After samples were tested for pneumococci by conventional culture, all plate growth was collected. DNA extracted from plate harvests was tested by quantitative-PCRs (qPCR) specific for S. pneumoniae and serotypes included in the 13-valent pneumococcal conjugated vaccine (PCV13). Pneumococci were cultured from 14 of 135 (10%) elderly with none of the sampled niches showing superiority in carriage detection. With 76/270 (28%) saliva, 31/270 (11%) trans-oral and 13/270 (5%) trans-nasal samples positive by qPCR, saliva was superior to nasopharyngeal swabs (p<0.001) in qPCR-based carriage detection. Overall, from all methods used in the study, 65 of 135 (48%) elderly carried pneumococci at least once and 26 (19%) at both study time points. The difference between carriage prevalence at ILI (n = 49 or 36%) versus recovery (n = 42 or 31%) was not significant (p = 0.38). At least 23 of 91 (25%) carriage events in 19 of 65 (29%) carriers were associated with PCV13-serotypes. We detected a large reservoir of pneumococci in saliva of elderly, with PCV13-serotype distribution closely resembling the contemporary carriage of serotypes reported in the Netherlands for PCV-vaccinated infants.


Subject(s)
Influenza, Human/microbiology , Pneumococcal Infections/genetics , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Aged , Aged, 80 and over , DNA, Bacterial/isolation & purification , Female , Humans , Influenza, Human/genetics , Influenza, Human/pathology , Male , Middle Aged , Pneumococcal Infections/microbiology , Saliva/microbiology , Serotyping , Streptococcus pneumoniae/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...