Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(7): e2206249, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436829

ABSTRACT

Transient batteries are expected to lessen the inherent environmental impact of traditional batteries that rely on toxic and critical raw materials. This work presents the bottom-up design of a fully transient Zn-ion battery (ZIB) made of nontoxic and earth-abundant elements, including a novel hydrogel electrolyte prepared by cross-linking agarose and carboxymethyl cellulose. Facilitated by a high ionic conductivity and a high positive zinc-ion species transference number, the optimized hydrogel electrolyte enables stable cycling of the Zn anode with a lifespan extending over 8500 h for 0.25 mA cm-2 - 0.25 mAh cm-2 . On pairing with a biocompatible organic polydopamine-based cathode, the full cell ZIB delivers a capacity of 196 mAh g-1 after 1000 cycles at a current density of 0.5 A g-1 and a capacity of 110 mAh g-1 after 10 000 cycles at a current density of 1 A g-1 . A transient ZIB with a biodegradable agarose casing displays an open circuit voltage of 1.123 V and provides a specific capacity of 157 mAh g-1 after 200 cycles at a current density of 50 mA g-1 . After completing its service life, the battery can disintegrate under composting conditions.

2.
Adv Sci (Weinh) ; 8(12): 2004814, 2021 06.
Article in English | MEDLINE | ID: mdl-34194934

ABSTRACT

Transient technology seeks the development of materials, devices, or systems that undergo controlled degradation processes after a stable operation period, leaving behind harmless residues. To enable externally powered fully transient devices operating for longer periods compared to passive devices, transient batteries are needed. Albeit transient batteries are initially intended for biomedical applications, they represent an effective solution to circumvent the current contaminant leakage into the environment. Transient technology enables a more efficient recycling as it enhances material retrieval rates, limiting both human and environmental exposures to the hazardous pollutants present in conventional batteries. Little efforts are focused to catalog and understand the degradation characteristics of transient batteries. As the energy field is a property-driven science, not only electrochemical performance but also their degradation behavior plays a pivotal role in defining the specific end-use applications. The state-of-the-art transient batteries are critically reviewed with special emphasis on the degradation mechanisms, transiency time, and biocompatibility of the released degradation products. The potential of transient batteries to change the current paradigm that considers batteries as harmful waste is highlighted. Overall, transient batteries are ready for takeoff and hold a promising future to be a frontrunner in the uptake of circular economy concepts.

3.
ACS Appl Mater Interfaces ; 13(18): 21250-21260, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33914505

ABSTRACT

Developing efficient energy storage technologies is at the core of current strategies toward a decarbonized society. Energy storage systems based on renewable, nontoxic, and degradable materials represent a circular economy approach to address the environmental pollution issues associated with conventional batteries, that is, resource depletion and inadequate disposal. Here we tap into that prospect using a marine biopolymer together with a water-soluble polymer to develop sodium ion battery (NIB) separators. Mesoporous membranes comprising agarose, an algae-derived polysaccharide, and poly(vinyl alcohol) are synthesized via nonsolvent-induced phase separation. Obtained membranes outperform conventional nondegradable NIB separators in terms of thermal stability, electrolyte wettability, and Na+ conductivity. Thanks to the good interfacial adhesion with metallic Na promoted by the hydroxyl and ether functional groups of agarose, the separators enable a stable and homogeneous Na deposition with limited dendrite growth. As a result, membranes can operate at 200 µA cm-2, in contrast with Celgard and glass microfiber, which short circuit at 50 and 100 µA cm-2, respectively. When evaluated in Na3V2(PO4)3/Na half-cells, agarose-based separators deliver 108 mA h g-1 after 50 cycles at C/10, together with a remarkable rate capability. This work opens up new possibilities for the use of water-degradable separators, reducing the environmental burdens arising from the uncontrolled accumulation of electronic waste in marine or land environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...