Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Viruses ; 13(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34696352

ABSTRACT

SARS-CoV-2 vaccine clinical trials assess efficacy against disease (VEDIS), the ability to block symptomatic COVID-19. They only partially discriminate whether VEDIS is mediated by preventing infection completely, which is defined as detection of virus in the airways (VESUSC), or by preventing symptoms despite infection (VESYMP). Vaccine efficacy against transmissibility given infection (VEINF), the decrease in secondary transmissions from infected vaccine recipients, is also not measured. Using mathematical modeling of data from King County Washington, we demonstrate that if the Moderna (mRNA-1273QS) and Pfizer-BioNTech (BNT162b2) vaccines, which demonstrated VEDIS > 90% in clinical trials, mediate VEDIS by VESUSC, then a limited fourth epidemic wave of infections with the highly infectious B.1.1.7 variant would have been predicted in spring 2021 assuming rapid vaccine roll out. If high VEDIS is explained by VESYMP, then high VEINF would have also been necessary to limit the extent of this fourth wave. Vaccines which completely protect against infection or secondary transmission also substantially lower the number of people who must be vaccinated before the herd immunity threshold is reached. The limited extent of the fourth wave suggests that the vaccines have either high VESUSC or both high VESYMP and high VEINF against B.1.1.7. Finally, using a separate intra-host mathematical model of viral kinetics, we demonstrate that a 0.6 log vaccine-mediated reduction in average peak viral load might be sufficient to achieve 50% VEINF, which suggests that human challenge studies with a relatively low number of infected participants could be employed to estimate all three vaccine efficacy metrics.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , COVID-19/immunology , COVID-19 Vaccines/pharmacology , Humans , Models, Theoretical , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Vaccines/pharmacology , Washington
2.
Obstet Gynecol ; 119(2 Pt 1): 276-85, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22270279

ABSTRACT

OBJECTIVE: To test the hypothesis that differential surface-enhanced laser desorption/ionization time-of-flight mass spectrometry protein or peptide expression in plasma can be used in infertile women with or without pelvic pain to predict the presence of laparoscopically and histologically confirmed endometriosis, especially in the subpopulation with a normal preoperative gynecologic ultrasound examination. METHODS: Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry analysis was performed on 254 plasma samples obtained from 89 women without endometriosis and 165 women with endometriosis (histologically confirmed) undergoing laparoscopies for infertility with or without pelvic pain. Data were analyzed using least squares support vector machines and were divided randomly (100 times) into a training data set (70%) and a test data set (30%). RESULTS: Minimal-to-mild endometriosis was best predicted (sensitivity 75%, 95% confidence interval [CI] 63-89; specificity 86%, 95% CI 71-94; positive predictive value 83.6%, negative predictive value 78.3%) using a model based on five peptide and protein peaks (range 4.898-14.698 m/z) in menstrual phase samples. Moderate-to-severe endometriosis was best predicted (sensitivity 98%, 95% CI 84-100; specificity 81%, 95% CI 67-92; positive predictive value 74.4%, negative predictive value 98.6%) using a model based on five other peptide and protein peaks (range 2.189-7.457 m/z) in luteal phase samples. The peak with the highest intensity (2.189 m/z) was identified as a fibrinogen ß-chain peptide. Ultrasonography-negative endometriosis was best predicted (sensitivity 88%, 95% CI 73-100; specificity 84%, 95% CI 71-96) using a model based on five peptide peaks (range 2.058-42.065 m/z) in menstrual phase samples. CONCLUSION: A noninvasive test using proteomic analysis of plasma samples obtained during the menstrual phase enabled the diagnosis of endometriosis undetectable by ultrasonography with high sensitivity and specificity. LEVEL OF EVIDENCE: II.


Subject(s)
Blood Proteins/analysis , Endometriosis/blood , Endometriosis/diagnosis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Adult , Endometriosis/diagnostic imaging , Female , Humans , Menstruation/blood , Predictive Value of Tests , Proteomics , Severity of Illness Index , Ultrasonography , Young Adult
3.
BMC Bioinformatics ; 12: 336, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21834994

ABSTRACT

BACKGROUND: Regulation of cellular events is, often, initiated via extracellular signaling. Extracellular signaling occurs when a circulating ligand interacts with one or more membrane-bound receptors. Identification of receptor-ligand pairs is thus an important and specific form of PPI prediction. RESULTS: Given a set of disparate data sources (expression data, domain content, and phylogenetic profile) we seek to predict new receptor-ligand pairs. We create a combined kernel classifier and assess its performance with respect to the Database of Ligand-Receptor Partners (DLRP) 'golden standard' as well as the method proposed by Gertz et al. Among our findings, we discover that our predictions for the tgfß family accurately reconstruct over 76% of the supported edges (0.76 recall and 0.67 precision) of the receptor-ligand bipartite graph defined by the DLRP "golden standard". In addition, for the tgfß family, the combined kernel classifier is able to relatively improve upon the Gertz et al. work by a factor of approximately 1.5 when considering that our method has an F-measure of 0.71 while that of Gertz et al. has a value of 0.48. CONCLUSIONS: The prediction of receptor-ligand pairings is a difficult and complex task. We have demonstrated that using kernel learning on multiple data sources provides a stronger alternative to the existing method in solving this task.


Subject(s)
Artificial Intelligence , Databases, Protein , Ligands , Receptors, Cell Surface/metabolism , Algorithms , Animals , Humans , Phylogeny , Protein Binding , Protein Interaction Mapping , Signal Transduction , Software
4.
BMC Bioinformatics ; 11: 460, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20840752

ABSTRACT

BACKGROUND: Discovering novel disease genes is still challenging for diseases for which no prior knowledge--such as known disease genes or disease-related pathways--is available. Performing genetic studies frequently results in large lists of candidate genes of which only few can be followed up for further investigation. We have recently developed a computational method for constitutional genetic disorders that identifies the most promising candidate genes by replacing prior knowledge by experimental data of differential gene expression between affected and healthy individuals.To improve the performance of our prioritization strategy, we have extended our previous work by applying different machine learning approaches that identify promising candidate genes by determining whether a gene is surrounded by highly differentially expressed genes in a functional association or protein-protein interaction network. RESULTS: We have proposed three strategies scoring disease candidate genes relying on network-based machine learning approaches, such as kernel ridge regression, heat kernel, and Arnoldi kernel approximation. For comparison purposes, a local measure based on the expression of the direct neighbors is also computed. We have benchmarked these strategies on 40 publicly available knockout experiments in mice, and performance was assessed against results obtained using a standard procedure in genetics that ranks candidate genes based solely on their differential expression levels (Simple Expression Ranking). Our results showed that our four strategies could outperform this standard procedure and that the best results were obtained using the Heat Kernel Diffusion Ranking leading to an average ranking position of 8 out of 100 genes, an AUC value of 92.3% and an error reduction of 52.8% relative to the standard procedure approach which ranked the knockout gene on average at position 17 with an AUC value of 83.7%. CONCLUSION: In this study we could identify promising candidate genes using network based machine learning approaches even if no knowledge is available about the disease or phenotype.


Subject(s)
Artificial Intelligence , Gene Expression Profiling/methods , Animals , Databases, Genetic , Mice , Phenotype
5.
Anal Chim Acta ; 665(2): 129-45, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20417323

ABSTRACT

This tutorial provides a concise overview of support vector machines and different closely related techniques for pattern classification. The tutorial starts with the formulation of support vector machines for classification. The method of least squares support vector machines is explained. Approaches to retrieve a probabilistic interpretation are covered and it is explained how the binary classification techniques can be extended to multi-class methods. Kernel logistic regression, which is closely related to iteratively weighted least squares support vector machines, is discussed. Different practical aspects of these methods are addressed: the issue of feature selection, parameter tuning, unbalanced data sets, model evaluation and statistical comparison. The different concepts are illustrated on three real-life applications in the field of metabolomics, genetics and proteomics.


Subject(s)
Algorithms , Artificial Intelligence , Pattern Recognition, Automated/methods , Brain Neoplasms/classification , Image Interpretation, Computer-Assisted , Least-Squares Analysis , Logistic Models
6.
Genome Med ; 1(4): 39, 2009 Apr 03.
Article in English | MEDLINE | ID: mdl-19356222

ABSTRACT

BACKGROUND: Although microarray technology allows the investigation of the transcriptomic make-up of a tumor in one experiment, the transcriptome does not completely reflect the underlying biology due to alternative splicing, post-translational modifications, as well as the influence of pathological conditions (for example, cancer) on transcription and translation. This increases the importance of fusing more than one source of genome-wide data, such as the genome, transcriptome, proteome, and epigenome. The current increase in the amount of available omics data emphasizes the need for a methodological integration framework. METHODS: We propose a kernel-based approach for clinical decision support in which many genome-wide data sources are combined. Integration occurs within the patient domain at the level of kernel matrices before building the classifier. As supervised classification algorithm, a weighted least squares support vector machine is used. We apply this framework to two cancer cases, namely, a rectal cancer data set containing microarray and proteomics data and a prostate cancer data set containing microarray and genomics data. For both cases, multiple outcomes are predicted. RESULTS: For the rectal cancer outcomes, the highest leave-one-out (LOO) areas under the receiver operating characteristic curves (AUC) were obtained when combining microarray and proteomics data gathered during therapy and ranged from 0.927 to 0.987. For prostate cancer, all four outcomes had a better LOO AUC when combining microarray and genomics data, ranging from 0.786 for recurrence to 0.987 for metastasis. CONCLUSIONS: For both cancer sites the prediction of all outcomes improved when more than one genome-wide data set was considered. This suggests that integrating multiple genome-wide data sources increases the predictive performance of clinical decision support models. This emphasizes the need for comprehensive multi-modal data. We acknowledge that, in a first phase, this will substantially increase costs; however, this is a necessary investment to ultimately obtain cost-efficient models usable in patient tailored therapy.

7.
Neural Netw ; 21(2-3): 437-49, 2008.
Article in English | MEDLINE | ID: mdl-18343309

ABSTRACT

Least squares support vector machine (LS-SVM) classifiers are a class of kernel methods whose solution follows from a set of linear equations. In this work we present low rank modifications to the LS-SVM classifiers that are useful for fast and efficient variable selection. The inclusion or removal of a candidate variable can be represented as a low rank modification to the kernel matrix (linear kernel) of the LS-SVM classifier. In this way, the LS-SVM solution can be updated rather than being recomputed, which improves the efficiency of the overall variable selection process. Relevant variables are selected according to a closed form of the leave-one-out (LOO) error estimator, which is obtained as a by-product of the low rank modifications. The proposed approach is applied to several benchmark data sets as well as two microarray data sets. When compared to other related algorithms used for variable selection, simulations applying our approach clearly show a lower computational complexity together with good stability on the generalization error.


Subject(s)
Algorithms , Artificial Intelligence , Least-Squares Analysis , Pattern Recognition, Automated , Computational Biology , Computer Simulation , Gene Expression Profiling
8.
Pac Symp Biocomput ; : 458-69, 2007.
Article in English | MEDLINE | ID: mdl-17990510

ABSTRACT

MALDI-based Imaging Mass Spectrometry (IMS) is an analytical technique that provides the opportunity to study the spatial distribution of biomolecules including proteins and peptides in organic tissue. IMS measures a large collection of mass spectra spread out over an organic tissue section and retains the absolute spatial location of these measurements for analysis and imaging. The classical approach to IMS imaging, producing univariate ion images, is not well suited as a first step in a prospective study where no a priori molecular target mass can be formulated. The main reasons for this are the size and the multivariate nature of IMS data. In this paper we describe the use of principal component analysis as a multivariate pre-analysis tool, to identify the major spatial and mass-related trends in the data and to guide further analysis downstream. First, a conceptual overview of principal component analysis for IMS is given. Then, we demonstrate the approach on an IMS data set collected from a transversal section of the spinal cord of a standard control rat.


Subject(s)
Image Processing, Computer-Assisted/statistics & numerical data , Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/statistics & numerical data , Animals , Computational Biology , Nerve Tissue Proteins/metabolism , Principal Component Analysis , Rats , Spinal Cord/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...