Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; 36(24): 6224-6231, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35007163

ABSTRACT

Two new tetrahydrofuran lignans 1-2, along with 2,3-seco-lup-20(29)-en-2,3-dioic acid (3), (-)-larreatricin (4), and 15 additional compounds were isolated from Combretum mellifluum (Combretaceae). Their structures were determined by 1D- and 2D- NMR spectroscopic data and HRESIMS. Another 15 compounds were identified after HPLC-DAD-MS/MS analysis. Tested against HT-29 (colon) neoplastic cells, lignan 1 showed marked cytotoxicity (GI50 = 3.9 µM) and high selectivity (SI > 227), compared with non-neoplastic NIH/3T3 cells, while 2 proved less cytotoxic, despite exhibiting SI > 75. Seco-triterpene 3 was strongly cytotoxic to 786-0 (kidney) and HT-29 cells (GI50 = 0.5 and 2.9 µM, respectively), proving roughly 107 and 18 times more selective for these cell lines, respectively, than for NIH/3T3 cells. After 48 h of incubation, 1-3 exhibited potent cytostatic activity against HT-29 cells at all concentrations tested, while 3 had a cytocidal effect on 786-0 cells at 25 µg.mL-1.


Subject(s)
Combretum , Lignans , Neoplasms , Triterpenes , Mice , Animals , Humans , Combretum/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Lignans/pharmacology , Lignans/chemistry , Tandem Mass Spectrometry , Molecular Structure , Cell Line, Tumor
2.
Molecules ; 21(6)2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27331807

ABSTRACT

Sixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.4 to 32.7 µM. The index of molecular hydrophobicity (ClogP) ranged from 2.8 to 3.4, reflecting a lipophilicity/hydrosolubility rate suitable for transport across membranes, which may have resulted in the potent antileishmanial activity observed. Regarding structure-activity relationship (SAR), compounds 14 and 19, containing a trimethoxy group, were the most active (IC50 values of 5.6 and 4.4 µM, respectively), with low cytotoxicity on mammalian cells (SI = 14.1 and 10.6). These compounds induced nitric oxide production by the host macrophage cells, which could be suggested as the mechanism involved in the intracellular killing of parasites. These results would be useful for the planning of new derivatives with higher antileishmanial activities.


Subject(s)
Furans/chemistry , Leishmaniasis/drug therapy , Lignans/chemistry , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , Furans/administration & dosage , Humans , Leishmania/drug effects , Leishmania/pathogenicity , Leishmaniasis/parasitology , Lignans/administration & dosage , Macrophages/drug effects , Nitric Oxide/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...