Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 13(11): 12710-12718, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31638764

ABSTRACT

Recent direct experimental observation of multiple highly dispersive C60 valence bands has allowed for a detailed analysis of the unusual photoemission traits of these features through photon energy- and polarization-dependent measurements. Previously obscured dispersions and strong photoemission traits are now revealed by specific light polarizations. The observed intensity effects prove the locking in place of the C60 molecules at low temperatures and the existence of an orientational order imposed by the substrate chosen. Most importantly, photon energy- and polarization-dependent effects are shown to be intimately linked with the orbital character of the C60 band manifolds which allow for a more precise determination of the orbital character within the third highest occupied molecular orbital (HOMO-2). Our observations and analysis provide important considerations for the connection between molecular and crystalline C60 electronic structure, past and future band structure studies, and for increasingly popular C60 electronic device applications, especially those making use of heterostructures.

2.
ACS Nano ; 11(5): 4686-4693, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28437062

ABSTRACT

Charge transfer at the interface between dissimilar materials is at the heart of electronics and photovoltaics. Here we study the molecular orientation, electronic structure, and local charge transfer at the interface region of C60 deposited on graphene, with and without supporting substrates such as hexagonal boron nitride. We employ ab initio density functional theory with van der Waals interactions and experimentally characterize interface devices using high-resolution transmission electron microscopy and electronic transport. Charge transfer between C60 and the graphene is found to be sensitive to the nature of the underlying supporting substrate and to the crystallinity and local orientation of the C60. Even at room temperature, C60 molecules interfaced to graphene are orientationally locked into position. High electron and hole mobilities are preserved in graphene with crystalline C60 overlayers, which has ramifications for organic high-mobility field-effect devices.

3.
Nature ; 520(7549): 650-5, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25901686

ABSTRACT

Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field, and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges. Recent theoretical work has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy) to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene.

4.
Nano Lett ; 15(2): 829-34, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25557832

ABSTRACT

We examine a variant of so-called carbon nanotube peapods by packing C60 molecules inside the open edge ducts of collapsed carbon nanotubes. C60 insertion is accomplished through a facile single-step solution-based process. Theoretical modeling is used to evaluate favorable low-energy structural configurations. Overfilling of the collapsed tubes allows infiltration of C60 over the full cross-section of the tubes and consequent partial or complete reinflation, yielding few-wall, large diameter cylindrical nanotubes packed with crystalline C60 solid cores.

SELECTION OF CITATIONS
SEARCH DETAIL
...