Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Antimicrob Agents ; 59(2): 106516, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34999239

ABSTRACT

High concentrations of ivermectin demonstrated antiviral activity against SARS-CoV-2 in vitro. The aim of this study was to assess the safety and efficacy of high-dose ivermectin in reducing viral load in individuals with early SARS-CoV-2 infection. This was a randomised, double-blind, multicentre, phase II, dose-finding, proof-of-concept clinical trial. Participants were adults recently diagnosed with asymptomatic/oligosymptomatic SARS-CoV-2 infection. Exclusion criteria were: pregnant or lactating women; CNS disease; dialysis; severe medical condition with prognosis <6 months; warfarin treatment; and antiviral/chloroquine phosphate/hydroxychloroquine treatment. Participants were assigned (ratio 1:1:1) according to a randomised permuted block procedure to one of the following arms: placebo (arm A); single-dose ivermectin 600 µg/kg plus placebo for 5 days (arm B); and single-dose ivermectin 1200 µg/kg for 5 days (arm C). Primary outcomes were serious adverse drug reactions (SADRs) and change in viral load at Day 7. From 31 July 2020 to 26 May 2021, 32 participants were randomised to arm A, 29 to arm B and 32 to arm C. Recruitment was stopped on 10 June because of a dramatic drop in cases. The safety analysis included 89 participants and the change in viral load was calculated in 87 participants. No SADRs were registered. Mean (S.D.) log10 viral load reduction was 2.9 (1.6) in arm C, 2.5 (2.2) in arm B and 2.0 (2.1) in arm A, with no significant differences (P = 0.099 and 0.122 for C vs. A and B vs. A, respectively). High-dose ivermectin was safe but did not show efficacy to reduce viral load.


Subject(s)
Antiviral Agents/pharmacokinetics , COVID-19 Drug Treatment , Ivermectin/pharmacokinetics , SARS-CoV-2/drug effects , Adult , Antiparasitic Agents/blood , Antiparasitic Agents/pharmacokinetics , Antiparasitic Agents/pharmacology , Antiviral Agents/blood , Antiviral Agents/pharmacology , COVID-19/blood , COVID-19/virology , Double-Blind Method , Drug Repositioning , Female , Humans , Ivermectin/blood , Ivermectin/pharmacology , Male , Middle Aged , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Treatment Outcome , Viral Load/drug effects
2.
Angiogenesis ; 16(4): 877-87, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23800974

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by arteriovenous malformations and hemorrhages. This vascular disease results mainly from mutations in 2 genes involved in the TGF-ß pathway (ENG and ALK1) that are exclusively expressed by endothelial cells. The present study identified miR-27a and miR-205 as two circulating miRNAs differentially expressed in HHT patients. The plasma levels of miR-27a are elevated while those of miR-205 are reduced in both HHT1 and HHT2 patients compared to healthy controls. The role of miR-205 in endothelial cells was further investigated. Our data indicates that miR-205 expression displaces the TGF-ß balance towards the anti-angiogenic side by targeting Smad1 and Smad4. In line, overexpression of miR-205 in endothelial cells reduces proliferation, migration and tube formation while its inhibition shows opposite effects. This study not only suggests that detection of circulating miRNA (miR-27a and miR-205) could help for the screening of HHT patients but also provides a functional link between the deregulated expression of miR-205 and the HHT phenotype.


Subject(s)
Endothelial Cells/metabolism , MicroRNAs/physiology , Neovascularization, Pathologic/genetics , Signal Transduction/physiology , Telangiectasia, Hereditary Hemorrhagic/genetics , Transcriptome , Transforming Growth Factor beta/physiology , Cell Division/drug effects , Cell Movement/drug effects , Cells, Cultured , Down-Regulation , Gene Expression Regulation/physiology , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells , Humans , MicroRNAs/antagonists & inhibitors , MicroRNAs/biosynthesis , MicroRNAs/blood , MicroRNAs/genetics , Neovascularization, Pathologic/blood , Neovascularization, Pathologic/physiopathology , Oligonucleotides, Antisense/pharmacology , Phenotype , ROC Curve , Receptors, Transforming Growth Factor beta/physiology , Signal Transduction/genetics , Smad1 Protein/biosynthesis , Smad1 Protein/genetics , Smad4 Protein/biosynthesis , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/blood , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/physiopathology , Transforming Growth Factor beta/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...