Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 261: 104302, 2024 02.
Article in English | MEDLINE | ID: mdl-38246087

ABSTRACT

Nuapada is one of the most drought-affected and fluoride-contaminated districts in Odisha, India. The presence of various dissolved substances, evapotranspiration, and lowering water table during pre- and post-monsoon (PRM and POM) seasons are responsible for declining groundwater (GW) quality over the Nuapada region. To comprehend the contaminated GW zones over the Nuapada and Komna blocks of the northern Nuapada district during the seasons, integration of hydrogeochemistry and statistical approaches using GW sample data on a geospatial platform have been done. The analysis exhibits that the major source of groundwater contamination is mostly geogenic with little anthropogenic impact. The cumulative impact of fluoride (F-), iron (Fe2+), and nitrate (NO3-) contents are noticed in great-depth zones of the water table in the north and south parts of Nuapada and Komna blocks, respectively. The dominant hydro facies, such as Na-Cl (41.77%) and Ca-Cl (25.31%) types exist over both blocks during PRM and POM seasons, respectively. Demarcation of contaminant and susceptible zones over the study area using geospatial analysis and groundwater quality indices (GWQI) were done. About 3% of the total area, in the north and middle parts of the Nuapada and Komna blocks, falls under contamination zones and is unfit for drinking purposes, and about 35% of the region is susceptible to future contamination. The outcome of the result analysis will enhance the scope for researchers, policymakers, and water managers to regulate emerging health, agricultural, and industrial issues in the stressed aquifer system in India and the world.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Fluorides/analysis , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Water Quality , Drinking Water/analysis , India
2.
iScience ; 26(2): 106049, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36818282

ABSTRACT

The mitogen-activated protein kinase (MAPK) cascade is involved in several signal transduction processes in eukaryotes. Here, we report a mechanistic function of MAP kinase kinase kinase 20 (MKKK20) in light signal transduction pathways. We show that MKKK20 acts as a negative regulator of photomorphogenic growth at various wavelengths of light. MKKK20 not only regulates the expression of light signaling pathway regulatory genes but also gets regulated by the same pathway genes. The atmyc2 mkkk20 double mutant analysis shows that MYC2 works downstream to MKKK20 in the regulation of photomorphogenic growth. MYC2 directly binds to the promoter of MKKK20 to modulate its expression. The protein-protein interaction study indicates that MKKK20 physically interacts with MYC2, and this interaction likely suppresses the MYC2-mediated promotion of MKKK20 expression. Further, the protein phosphorylation studies demonstrate that MKKK20 works as the upstream kinase of MKK3-MPK6-MYC2 module in photomorphogenesis.

3.
Plant J ; 99(6): 1080-1097, 2019 09.
Article in English | MEDLINE | ID: mdl-31059179

ABSTRACT

Arabidopsis MYC2 bHLH transcription factor plays a negative regulatory role in blue light (BL)-mediated seedling development. HY5 bZIP protein works as a positive regulator of multiple wavelengths of light and promotes photomorphogenesis. Both MYC2 and HY5, belonging to two different classes of transcription factors, are the integrators of multiple signaling pathways. However, the functional interrelations of these two transcription factors in seedling development remain unknown. Additionally, whereas HY5-mediated regulation of gene expression has been investigated in detail, the transcriptional regulation of HY5 itself is yet to be understood. Here, we show that HY5 and MYC2 work in an antagonistic manner in Arabidopsis seedling development. Our results reveal that HY5 expression is negatively regulated by MYC2 predominantly in BL, and at various stages of development. On the other hand, HY5 negatively regulates the expression of MYC2 at various wavelengths of light. In vitro and in vivo DNA-protein interaction studies suggest that MYC2 binds to the E-box cis-acting element of HY5 promoter. Collectively, this study demonstrates a coordinated regulation of MYC2 and HY5 in blue-light-mediated Arabidopsis seedling development.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Seedlings/genetics , Anthocyanins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/radiation effects , Chlorophyll/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/radiation effects , Gravitropism/genetics , Light , Microscopy, Fluorescence , Mutation , Phenotype , Plant Roots/genetics , Plant Roots/metabolism , Promoter Regions, Genetic , Protein Binding , Seedlings/growth & development , Seedlings/metabolism , Signal Transduction/genetics , Signal Transduction/radiation effects , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...