Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 166(3): 572-587, 2023 08.
Article in English | MEDLINE | ID: mdl-37415276

ABSTRACT

The E4 allele of apolipoprotein E (ApoE4) is a key genetic risk factor for late-onset Alzheimer's disease (AD), increasing the risk of developing the disease by up to three-fold. However, the mechanisms by which ApoE4 contributes to AD pathogenesis are poorly understood. Here, we utilize a mouse model expressing either human ApoE3 or human ApoE4 to examine the effects of the E4 allele on a wide range of genetic and molecular pathways that are altered in early AD pathology. We demonstrate that ApoE4-expressing mice begin to show early differential expression of multiple genes, leading to alterations in downstream pathways related to neural cell maintenance, insulin signaling, amyloid processing and clearance, and synaptic plasticity. These alterations may result in the earlier accumulation of pathological proteins such as ß-amyloid that may build up within cells, leading to the accelerated degeneration of neurons and astrocytes as observed in ApoE4-positive individuals. We also examine the metabolic effects associated with a high-fat diet (HFD) in male ApoE4-expressing mice compared with regular chow diet (RD) fed mice at different ages. We found that young ApoE4-expressing mice fed HFD developed metabolic disturbances, such as elevated weight gain, blood glucose, and plasma insulin levels that cumulatively have been observed to increase the risk of AD in humans. Taken together, our results reveal early pathways that could mediate ApoE4-related AD risk and may help identify more tractable therapeutic targets for treating ApoE4-associated AD.


Subject(s)
Alzheimer Disease , Insulins , Humans , Mice , Male , Animals , Alzheimer Disease/metabolism , Apolipoprotein E4/genetics , Mice, Transgenic , Brain/metabolism , Apolipoproteins E/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Insulins/metabolism
2.
Neurochem Int ; 140: 104810, 2020 11.
Article in English | MEDLINE | ID: mdl-32768485

ABSTRACT

The sodium-coupled high-affinity choline transporter CHT plays a critical role in acetylcholine (ACh) synthesis by taking up the substrate choline from the synaptic cleft after neurotransmitter release; this conservation mechanism is the rate-limiting step for production of ACh, thereby facilitating communication by subsequent action potentials. Mice carrying a null mutation for CHT die within an hour of birth due to respiratory failure, indicating the essential role of CHT proteins for sustaining cholinergic transmission. Choline uptake activity is regulated dynamically by CHT proteins undergoing rapid trafficking between subcellular compartments and the plasma membrane where they are functionally active. CHT proteins internalize from the cell surface into the endolysosomal pathway by a clathrin-mediated mechanism, but can undergo ubiquitination and proteosomal degradation under conditions such as cellular oxidative stress. Over the years, functionally-relevant CHT polymorphisms have been linked to a range of neurological and psychiatric disorders, including ADHD and depression; the impact of these mutations and the extent to which they alter cholinergic signaling have not been addressed fully. Recent studies have identified compounds that can either promote or diminish cholinergic neurotransmission by modulating CHT function, thus having the potential to serve as pharmacological tools or therapeutic prototypes. Here, we review regulation of CHT activity, trafficking and subcellular disposition of CHT proteins, alteration of transporter function in genetic, neurological and psychiatric diseases, and investigations of compounds that modulate activity of the transporter.


Subject(s)
Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Sodium/metabolism , Synaptic Transmission/physiology , Animals , Cell Membrane/genetics , Cell Membrane/metabolism , Choline/genetics , Choline/metabolism , Humans , Protein Transport/physiology , Symporters/genetics , Symporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...