Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-18, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747068

ABSTRACT

Cancer is a major health concern globally. Orthodox and traditional medicine have actively been explored to manage this disease. Also, corrosion is a natural catastrophe that weakens and deteriorates metallic structures and their alloys causing major structural failures and severe economic implications. Designing and exploring multi-functional materials are beneficial since they are adaptive to different fields including engineering and pharmaceutics. In this study, we examined the anti-corrosion and anti-cancer potentials of 1-(4-methoxyphenyl)-5-methyl-N'-(2-oxoindolin-3-ylidene)-1H-1,2,3-triazole-4-carbohydrazide (MAC) using computational approaches. The molecular reactivity descriptors and charge distribution parameters of MAC were studied in gas and water at density functional theory (DFT) at B3LYP/6-311++G(d,p) theory level. The binding and mechanism of interaction between MAC and iron surface was studied using Monte Carlo (MC) and molecular dynamics (MD) simulation in hydrochloric acid medium. From the DFT, MC, and MD simulations, it was observed that MAC interacted spontaneously with iron surface essentially via van der Waal and electrostatic interactions. The near-parallel alignment of the corrosion inhibitor on iron plane facilitates its adsorption and isolation of the metal surface from the acidic solution. Further, the compound was docked in the binding pocket of anaplastic lymphoma kinase (ALK: 4FNZ) protein to assess its anti-cancer potential. The binding score, pharmacokinetics, and drug-likeness of MAC were compared with the reference drug (Crizotinib). The MAC displayed binding scores of -5.729 kcal/mol while Crizotinib has -3.904 kcal/mol. MD simulation of the complexes revealed that MAC is more stable and exhibits more favourable hydrogen bonding with the ALK receptor's active site than Crizotinib.Communicated by Ramaswamy H. Sarma.

2.
Heliyon ; 8(10): e10831, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36211997

ABSTRACT

Isopropyl 1-benzoyl-4-(benzoyloxy)-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate (IDPC) was synthesized and characterized via spectroscopic (FT-IR and NMR) techniques. Hirshfeld surface and topological analyses were conducted to study structural and molecular properties. The energy gap (Eg), frontier orbital energies (EHOMO, ELUMO) and reactivity parameters (like chemical hardness and global hardness) were calculated using density functional theory with B3LYP/6-311++G (d,p) level of theory. Molecular docking of IDPC at the active sites of SARS-COVID receptors was investigated. IDPC molecule crystallized in the centrosymmetric triclinic ( P 1 ¯ ) space group. The topological and Hirshfeld surface analysis revealed that covalent, non-covalent and intermolecular H-bonding interactions, and electron delocalization exist in the molecular framework. Higher binding score (-6.966 kcal/mol) of IDPC at the active site of SARS-COVID main protease compared to other proteases suggests that IDPC has the potential of blocking polyprotein maturation. H-bonding and π-cationic and interactions of the phenyl ring and carbonyl oxygen of the ligand indicate the effective inhibiting potential of the compound against the virus.

SELECTION OF CITATIONS
SEARCH DETAIL
...