Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Food Chem ; 457: 140032, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38936117

ABSTRACT

The aim of the presented study was to evaluate the release of the enzymatically initiated production of hexanal from double emulsion electrospun bio-active membranes at a temperature of fruit storage. Among different formulations of water-in-oil (W1/O) primary emulsions, the emulsion composed of 12% w/v Tween20 and 0.1 M NaCl in water (W1) and 6% of poly(glycerol) poly(ricinoleate) dissolved in sunflower oil (O) using W1/O ratio of 80/20 (w/w) (Tween20-NaCl/6% PGPR) was selected, for further incorporation of enzymes, based on the lowest average droplet size (391.0 ± 15.6 nm), low polydispersity index (0.255 ± 0.07), and good gravitational stability also after 14 days. Both enzymes, lipase and lipoxygenase are needed to produce hexanal (up to 58 mg/L). Additionally, double emulsions were prepared with sufficient conductivity and viscosity using different W1/O to W2 ratios for electrospinning. From the selected electrospun membrane, up to 4.5 mg/L of hexanal was released even after 92 days.

2.
Polymers (Basel) ; 16(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543330

ABSTRACT

In the presented research, a facile, one-step method for the fabrication of cellulose nanofibrils/pectin (CNFs/PC) membranes is described, which were tested further for their ability to remove cationic dyes from the prepared model solutions. For this purpose, ten membranes were prepared with different quantities of CNFs and PC with/without citric acid (CA) or CaCl2 as mediated crosslinking agents, and they were characterised comprehensively in terms of their physical, chemical, and hydrophilic properties. All the prepared CNFs/PC membranes were hydrophilic with a Water Contact Angle (WCA) from 51.23° (without crosslinker) up to 78.30° (CaCl2) and swelling of up to 485% (without crosslinker), up to 437% (CaCl2) and up to 270% (CA). The stability of membranes was decreased with the increase in PC; thus, only four membranes (M1, M2, M3 and M5) were stable enough in water after 24 h, and these were additionally applied in the adsorption trials, using two structurally different cationic dyes, i.e., C.I. Basic Yellow 28 (BY28) and C.I. Basic Blue 22 (BB22), in four concentrations. The highest total surface charge of M3 (2.83 mmol/g) as compared to the other membranes influenced the maximal removal efficiency of both dyes, up to 37% (BY28) and up to 71% (BB22), depending on the initial dye concentration. The final characteristics of the membranes and, consequently, the dye's absorption ability could be tuned easily by changing the ratio between the CNFs and PC, as well as the type and amount of crosslinker.

3.
Polymers (Basel) ; 15(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36904551

ABSTRACT

The proposed paper describes the influence of woven fabric constructional parameters (type of weave, relative fabric density) and colouration (obtained by eco-friendly dyeing) on the solar transmittance of cotton woven fabrics in the range of 210-1200 nm. The cotton woven fabrics in their raw state were prepared according to Kienbaum's setting theory, at three levels of relative fabric density and three levels of the weave factor, and then exposed to the dyeing process with natural dyestuffs (beetroot, walnut leaves). After ultraviolet/visible/near-infrared (UV/VIS/IRA) solar transmittance and reflection in the range of 210-1200 nm were recorded, the influence of the fabric construction and colouration were analysed. The guidelines for fabric constructor were proposed. The results show that the walnut-coloured satin samples at the third level of relative fabric density provide the best solar protection in the whole solar spectrum. All the tested eco-friendly dyed fabrics offer good solar protection, while only raw satin fabric at the third level of relative fabric density can be classified as solar protective material with even better protection in IRA region than some coloured samples.

4.
Polymers (Basel) ; 15(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36850186

ABSTRACT

The presented study focuses on the modification of polypropylene (PP) film with tetraethyl orthosilicate (TEOS) under heterogeneous conditions via polydopamine/polyethylene imine (PDA/PEI) chemistry using a facile dip-coating procedure to attain hydrophilic mineral-rich surfaces. Thus, the resulting PP-based films were further immersed in ion-rich simulated body fluid (SBF) to deposit Ca-based minerals onto the film's surfaces efficiently. In addition, the chemical reaction mechanism on PP film was proposed, and mineralisation potential inspected by determination of functional groups of deposits, zeta potential, hydrophilicity and surface morphology/topography using Fourier transform infrared (FTIR) spectroscopy, streaming potential, water contact angle (WCA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The obtained results show the improved wettability of samples on account of PDA inclusion (WCA was reduced from 103° for pure PP film to 28° for PDA-modified film), as well as the presence of functional groups, due to the PDA/PEI/TEOS surface functionalisation, increased the ability of minerals to nucleate on the PP film's surface when it was exposed to an SBF medium. Moreover, the higher surface roughness due to the silica coatings influenced the enhanced anchoring and attachment of calcium phosphate (CaP), revealing the potential of such a facile approach to modify the chemically inert PP films, being of particular interest in different fields, including regenerative medicine.

5.
Polymers (Basel) ; 14(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36365707

ABSTRACT

The presented review summarizes recent studies in the field of electro conductive textiles as an essential part of lightweight and flexible textile-based electronics (so called e-textiles), with the main focus on a relatively simple and low-cost dip-coating technique that can easily be integrated into an existing textile finishing plant. Herein, numerous electro conductive compounds are discussed, including intrinsically conductive polymers, carbon-based materials, metal, and metal-based nanomaterials, as well as their combinations, with their advantages and drawbacks in contributing to the sectors of healthcare, military, security, fitness, entertainment, environmental, and fashion, for applications such as energy harvesting, energy storage, real-time health and human motion monitoring, personal thermal management, Electromagnetic Interference (EMI) shielding, wireless communication, light emitting, tracking, etc. The greatest challenge is related to the wash and wear durability of the conductive compounds and their unreduced performance during the textiles' lifetimes, which includes the action of water, high temperature, detergents, mechanical forces, repeated bending, rubbing, sweat, etc. Besides electrical conductivity, the applied compounds also influence the physical-mechanical, optical, morphological, and comfort properties of textiles, depending on the type and concentration of the compound, the number of applied layers, the process parameters, as well as additional protective coatings. Finally, the sustainability and end-of-life of e-textiles are critically discussed in terms of the circular economy and eco-design, since these aspects are mainly neglected, although e-textile' waste could become a huge problem in the future when their mass production starts.

6.
Materials (Basel) ; 15(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35208028

ABSTRACT

The presented study assesses the efficiency of selected adsorbents, zeolite 4A in two particle sizes and pelletized activated carbon (AC), for the potential removal of color, chemical oxygen demand (COD), total organic carbon (TOC) and metals from wastewaters after natural wool dyeing. Firstly, the natural coloring compounds were extracted from dried common walnut (Juglans regia) leaves and used further for exhaustion dyeing of wool fibers, together with three different metallic salts in two concentrations (meta-mordanting). Effluents with higher mordant concentration were additionally treated according to a shake-flask adsorption experiment. The obtained results revealed efficient removal of exceeded metallic ions by zeolite (up to 94.7%), on account of their superior ion exchange capability as compared to AC. The zeolites also reduced turbidity and electrical conductivity significantly. On the other hand, AC was more efficient for the reduction in organic pollution, COD up to 96% and TOC up to 95%, due to its higher specific surface area and total pore volume, and, thus, higher potential for adsorption of different compounds in comparison to 4A. All three proposed adsorbents lowered wastewaters' coloration remarkably, up to 78% (AC) and up to 71% (4A), depending on the type of effluent/mordant and inspected wavelength; although, the spectral absorbance coefficient (SAC) values remained highly above the limit values for discharge of wastewaters into watercourses.

7.
Sensors (Basel) ; 21(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070032

ABSTRACT

The rapid growth in wearable technology has recently stimulated the development of conductive textiles for broad application purposes, i.e., wearable electronics, heat generators, sensors, electromagnetic interference (EMI) shielding, optoelectronic and photonics. Textile material, which was always considered just as the interface between the wearer and the environment, now plays a more active role in different sectors, such as sport, healthcare, security, entertainment, military, and technical sectors, etc. This expansion in applied development of e-textiles is governed by a vast amount of research work conducted by increasingly interdisciplinary teams and presented systematic review highlights and assesses, in a comprehensive manner, recent research in the field of conductive textiles and their potential application for wearable electronics (so called e-textiles), as well as development of advanced application techniques to obtain conductivity, with emphasis on metal-containing coatings. Furthermore, an overview of protective compounds was provided, which are suitable for the protection of metallized textile surfaces against corrosion, mechanical forces, abrasion, and other external factors, influencing negatively on the adhesion and durability of the conductive layers during textiles' lifetime (wear and care). The challenges, drawbacks and further opportunities in these fields are also discussed critically.

8.
Carbohydr Polym ; 251: 117126, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33142658

ABSTRACT

The use of biomass to produce value-adding materials is a core objective of the circular economy, which has attracted great research interest in recent decades. In this context, we present here a simple dispersion-casting process for consolidation of cellulose nanofibrils (CNF), lignosulphonate (LS)-rich bio-waste and CaCl2 in composite membranes. The addition of CaCl2 to CNF and LS dispersions reduces the ζ potential, due to an electrostatic screening, which promotes the aggregation of CNF, increases its moisture content and promotes LS deposition on CNFs already in the dispersion phase. Addition of both the LS and CaCl2 to CNF dispersion has an adverse effect on the mechanical properties of the final membranes. The effectiveness of the new composite membranes has been described in terms of their passive (charring) flame retardancy and 100 % UVA/UVB shielding capacity, both identified for membranes with the highest LS content, as well as high electronic resistance.


Subject(s)
Cellulose/chemistry , Flame Retardants/analysis , Lignin/analogs & derivatives , Nanofibers/chemistry , Radiation-Protective Agents/chemistry , Lignin/chemistry , Ultraviolet Rays
9.
Polymers (Basel) ; 12(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066558

ABSTRACT

In the present study, cotton (Co) and polyester (PES) fabrics were screen-printed with a conductive poly3,4-ethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) printing paste along with a commercially-available screen-printing binder (SFXC) or waterborne polyurethane resin (WPU), in order to enhance wash and wear durability, and to improve some functional properties, without essentially influencing the physical-mechanical properties of the base material, as well as the introduced fabrics' conductivity. The application of a conductive polymer coating reduced transmittance in the whole UV region drastically, indicating good UV-shielding ability in the treated fabrics. Moreover, the employed binders improved the fabrics' protection against harmful solar UV radiation significantly, depending on the type of fibre and binder. Furthermore, the SFXC binder intensified the hydrophobicity of Co as compared to the WPU binder, and, on the other hand, WPU reduced the hydrophobicity of PES. Finally, the screen-printed fabrics were washed up to 20 cycles and rubbed up to 20,000 cycles, and characterised by means of mass loss determination and electrical resistivity measurement. Both binders enlarged polymer stability against the effect of washing and rubbing, depending on the number of cycles, the type and amount of employed binder, the type of fibres, and the thickness and uniformity of coatings.

10.
Polymers (Basel) ; 12(6)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503147

ABSTRACT

The selective metallisation of textiles is becoming a very important process in the development of electronic or e-textiles. This study investigated the efficacy of polymer coatings for the protection of copper (Cu) conductive tracks electroless plated on polyester (PES) fabric against laundering and rubbing, without essentially affecting the physical-mechanical and optical properties of the base material. After the electroless deposition of a consistent layer of Cu onto PES, four polymers were applied individually by screen-printing or padding. The physical-mechanical characterisation of coated textiles revealed that polyurethane resin (PUR) and modified acrylate resin (AR) had little effect on the air permeability, tensile strength and breaking tenacity of the PES, as compared to silicone elastomer polydimethylsiloxane (PDMS) and epoxy resin (ER). On the other hand, PUR and PDMS had higher abrasion resistance and photo-stability under prolonged UV irradiation, as compared to AR and ER. In addition, freshly Cu plated samples were coated with polymers, washed up to 30 cycles and characterised by measuring their electrical resistivity, determination of colour changes and the examination of the surface morphology. Based on these results, PUR presented the most suitable protection of Cu tracks on PES, with the lowest impact on physical-mechanical properties. ER is not recommended to be used for protection of Cu tracks on fabrics, due to its rigidity, low photo-stability, washing and wear durability.

11.
Carbohydr Polym ; 236: 116071, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172885

ABSTRACT

The optimized preparation of novel electrospun nanofibrous composites from cellulose acetate (CA) and ultra-high silica zeolites (UHSZ) are reported as a promising material for the adsorption of Volatile Organic Compound (VOCs). Two types of UHSZs, i.e. silicalite and USY were prepared by hydrothermal crystallization while the fabrication of composites was performed using single needle and needle-less electrospinning systems, demonstrating the scalability of the composite fibres' manufactured. Herein, factors such as properties of spinning solutions and electrospinning process parameters were studied, as well as interactions between the CA and UHSZs. In addition, Quartz Crystal Microbalance - Dissipation technique (QCM-D) was employed with an aim to study the adsorption behaviour of newly developed composites using ammonia as a model pollutant. The QCM-D data revealed that the presence of UHSZs in the CA materials increased adsorption capacity, designating CA/UHSZ composites as potential materials suitable for a large-scale removal of VOCs from polluted air.

12.
Polymers (Basel) ; 11(7)2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31330778

ABSTRACT

The presented study focuses on photoluminescent pigments applied on cotton fabric by a screen-printed procedure using polydimethylsiloxane (PDMS) as a binder. Microscopic data depicts irregular shapes and relatively wide size distribution (3-80 µm) of pigments. Regarding composition, the Energy-Dispersive X-ray (EDX) and Fourier Transform Infrared (FTIR) spectroscopy data complement findings suggesting the presence of Eu-doped strontium aluminate in the yellow-green, calcium aluminate in the violet pigment, and metal oxides in the blue pigment. The optical properties of pigment-enriched PDMS-coated cotton fabric were assessed and reflectance intensity was found to be concentration-dependent only in the blue pigment. The luminescence decay data show that luminescence intensity decreased with the reduction of pigment concentration in the following order, yellow-green > blue > violet pigments. Relying on absorption and emission data of powdered pigments, the confocal microscopy enables visualization of the pigments' distribution within a 3D image projection. This identifies the most homogeneous distribution in the case of the blue pigment, as well as the presence of a continuous fluorescing signal in the z projection when 5% pigment was used. This was, for the first time, presented as a powerful tool for non-destructive visualization of photoluminescent pigments' spatial distribution when printed on textile (cotton) fabric. Finally, the photoluminescent PDMS coating demonstrates high washing and abrasion resistance, contributing to overall functionality of printed cotton fabrics when commercial types of pigments are applied.

13.
Polymers (Basel) ; 10(1)2018 Jan 09.
Article in English | MEDLINE | ID: mdl-30966092

ABSTRACT

The presented study focuses on the development of a pad-dry-thermofix functional coating process using a mixture of microporous aluminosilicate particles in diverse bath formulations to impart UV-ray-blocking, thermal stability and easy-care properties to the cotton fabric. The results of Scanning Electron Microscopy (SEM) and X-ray powder Diffraction (XRD) revealed the presence of three different types of zeolites within the examined sample, i.e., the largest amount being zeolite A, followed by the zeolite X, and the zeolite ZSM-5. The surface characterization results of zeolite-coated/cross-linked textiles provided evidence of acceptable UV-ray-blocking properties and increased thermal stability, as well as enhanced tensile strength and breaking tenacity without considerably decreasing the whiteness degree. Moreover, the dry crease recovery angle increased for the cotton fabric cross-linked via an mDMDHEU, and decreased significantly using 30 g/L zeolites negatively influencing qualitative values. TG/DTA results have proven the enlarged thermal stability of aluminosilicate-coated cotton, although combustion was not prevented.

14.
Anal Sci ; 24(12): 1581-7, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19075468

ABSTRACT

The objective of the presented research was to examine the potential of capillary electrophoresis (CE) for the analysis of structurally different reactive dyestuffs, their activation and posterior hydrolysis, with special focus on optimization of the working conditions. Preliminary, the effect of various additives to the background electrolyte on the resolution improvements versus migration time of Reactive Black 5 as a model dyestuff was investigated. Based on these results, the electropherograms of eight commercially interesting reactive dyestuffs of various chemical structures and their converted forms upon alkaline pH were carried-out. In order to examine the behavior of the reactive dyestuff during the dyeing process, the dye-bath absorbance was monitored throughout the Reactive Black 5 exhaustion, and the conversion of the dye's form was highlighted using the CE technique. The obtained results unequivocally prove that CE could offer a fast and efficient detection method of structurally different reactive dyestuffs, as well as their hydrolysis products in the dye-baths and effluents later on.

15.
J Hazard Mater ; 155(1-2): 76-82, 2008 Jun 30.
Article in English | MEDLINE | ID: mdl-18164544

ABSTRACT

The objective of the present paper was to examine the treatment efficiency of constructed wetlands (CW) for the dye-rich textile wastewater with special focus on colour reduction. Preliminary, a series of dynamic experiments was performed in the CW model packed with gravel, sand, and zeolitic tuff on three synthetically prepared wastewaters using chemically differ dyestuffs, auxiliaries and chemicals, in order to investigate the potential of low-cost materials as media for textile dye-bath wastewater treatment. The obtained results evidence that applied CW model reduces colour by up to 70%, and COD and TOC by up to 45%. Based on these results, the pilot CW with vertical (VF) and horizontal flow (HF) was constructed near textile factory mainly for cotton and cotton/PES processing with intention to treat real textile wastewater in situ. It was designed for 1m3/day, covering 80 m2, packed with sand and gravel, and planted with Phragmites australis. The average treatment efficiency of the CW for the selected pollution parameters were: COD 84%, BOD5 66%, TOC 89%, Ntotal 52%, Norganic 87%, NH4-N -331%, sulphate 88%, anion surfactant 80%, total suspended solids (TSS) 93%, and colour 90%, respectively. The results unequivocally proved that the CW could offer an optimal solution to meet the environmental legislation as well as requirements for effective and inexpensive textile wastewater treatment.


Subject(s)
Coloring Agents , Waste Disposal, Fluid/methods , Water Pollutants, Chemical , Industrial Waste , Textiles , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...