Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Chem ; 1: 8, 2013.
Article in English | MEDLINE | ID: mdl-24790937

ABSTRACT

Synthesis of dimethyl carbonate (DMC) from CO2 and methanol under milder reaction conditions was performed using reduced cerium oxide catalysts and reduced copper-promoted Ce oxide catalysts. Although the conversion of methanol was low (0.005-0.11%) for 2 h of reaction, DMC was synthesized as low as 353 K and at total pressure of as low as 1.3 MPa using reduced Cu-CeO2 catalyst (0.5 wt% of Cu). The apparent activation energy was 120 kJ mol(-1) and the DMC synthesis rates were proportional to the partial pressure of CO2. An optimum amount of Cu addition to CeO2 was 0.1 wt% for DMC synthesis under the conditions at 393 K and total pressure of 1.3 MPa for 2 h (conversion of methanol: 0.15%) due to the compromise of two effects of Cu: the activation of H2 during reduction prior to the kinetic tests and the block (cover) of the surface active site. The reduction effects in H2 were monitored through the reduction of Ce(4+) sites to Ce(3+) based on the shoulder peak intensity at 5727 eV in the Ce L3-edge X-ray absorption near-edge structure (XANES). The Ce(3+) content was 10% for reduced CeO2 catalyst whereas it increased to 15% for reduced Cu-CeO2 catalyst (0.5 wt% of Cu). Moreover, the content of reduced Ce(3+) sites (10%) associated with the surface O vacancy (defect sites) decreased to 5% under CO2 at 290 K for reduced Cu-CeO2 catalyst (0.1 wt% of Cu). The adsorption step of CO2 on the defect sites might be the key step in DMC synthesis and thus the DMC synthesis rate dependence on the partial pressure of CO2 was proportional. Subsequent H atom subtraction steps from methanol at the neighboring surface Lewis base sites should combine two methoxy species to the adsorbed CO2 to form DMC, water, and restore the surface O vacancy.

2.
Dev Genes Evol ; 220(1-2): 53-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20449607

ABSTRACT

Larvae of the sawfly, Athalia rosae, have remarkable abdominal prolegs. We analyzed the morphogenesis of appendages and the expression of decapentaplegic and Distal-less genes during embryonic development to characterize the origin of prolegs. Proleg primordia in abdominal segments A1-A9 appeared shortly after the inner lobes (endites) of gnathal appendages were formed. These were located on the ventral plates, medioventral to the appendages of the other segments in light of serial homology. Nothing was seen where the main axis of the appendage should develop in abdominal segments. The primordia in A1 and A9 disappeared before larval hatching. Anal prolegs appeared separate from cerci, the main axes of appendages, which were formed temporarily in A11. The expression of decapentaplegic, which reflects the primary determination of appendages, was detected in the lateral juxtaposition with the prolegs. Distal-less was expressed in the main axes of appendages, protruding endites and the cerci, but not in prolegs and anal prolegs or the gnathal endites which do not protrude. These findings suggest a possibility that the abdominal and anal prolegs of A. rosae are outgrowths of ventral plates which derived from coxopodal elements, but not main axes of appendages.


Subject(s)
Hymenoptera/embryology , Hymenoptera/ultrastructure , Abdomen/embryology , Animals , Body Patterning , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/ultrastructure , Extremities/embryology , Gene Expression , Hymenoptera/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...