Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 128(4): 716-726, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38236195

ABSTRACT

Understanding disordered structure is difficult due to insufficient information in experimental data. Here, we overcome this issue by using a combination of diffraction and simulation to investigate oxygen packing and network topology in glassy (g-) and liquid (l-) MgO-SiO2 based on a comparison with the crystalline topology. We find that packing of oxygen atoms in Mg2SiO4 is larger than that in MgSiO3, and that of the glasses is larger than that of the liquids. Moreover, topological analysis suggests that topological similarity between crystalline (c)- and g-(l-) Mg2SiO4 is the signature of low glass-forming ability (GFA), and high GFA g-(l-) MgSiO3 shows a unique glass topology, which is different from c-MgSiO3. We also find that the lowest unoccupied molecular orbital (LUMO) is a free electron-like state at a void site of magnesium atom arising from decreased oxygen coordination, which is far away from crystalline oxides in which LUMO is occupied by oxygen's 3s orbital state in g- and l-MgO-SiO2, suggesting that electronic structure does not play an important role to determine GFA. We finally concluded the GFA of MgO-SiO2 binary is dominated by the atomic structure in terms of network topology.

2.
J Phys Chem Lett ; 11(16): 6779-6784, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32706961

ABSTRACT

Because ice surfaces catalyze various key chemical reactions impacting nature and human life, the structure and dynamics of interfacial layers between water vapor and ice have been extensively debated with attention to the quasi-liquid layer. Other interfaces between liquid water and ice remain relatively underexplored, despite their importance and abundance on the Earth and icy extraterrestrial bodies. By in situ optical microscopy, we found that a high-density liquid layer, distinguishable from bulk water, formed at the interface between water and high-pressure ice III or VI, when they were grown or melted in a sapphire anvil cell. The liquid layer showed a bicontinuous pattern, indicating that immiscible waters with distinct structures were separated on the interfaces in a similar manner to liquid-liquid phase separation through spinodal decomposition. Our observations not only provide a novel opportunity to explore ice surfaces but also give insight into the two kinds of structured water.

3.
Nat Commun ; 5: 5892, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25520236

ABSTRACT

The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.

4.
Rev Sci Instrum ; 78(2): 026102, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17578151

ABSTRACT

A compact electrostatic levitator was developed for the structural analysis of high-temperature liquids by x-ray diffraction methods. The size of the levitator was 200 mm in diameter and 200 mm in height and can be set up on a two axis diffractometer with a laboratory x-ray source, which is very convenient in performing structural measurements of high-temperature liquids. In particular, since the laboratory x-ray source allows a great amount of user time, preliminary or challenging experiments can be performed with trial and error, which prepares and complements synchrotron x-ray experiments. The present small apparatus also provides the advantage of portability and facility of setting. To demonstrate the capability of this electrostatic levitator, the static structure factors of alumina and silicon samples in their liquid phases were successfully measured.

SELECTION OF CITATIONS
SEARCH DETAIL
...