Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7437, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548857

ABSTRACT

Aegilops umbellulata Zhuk., a wild diploid wheat-related species, has been used as a genetic resource for several important agronomic traits. However, its genetic variations have not been comprehensively studied. We sequenced RNA from 114 accessions of Ae. umbellulata to evaluate DNA polymorphisms and phenotypic variations. Bayesian clustering and phylogenetic analysis based on SNPs detected by RNA sequencing revealed two divergent lineages, UmbL1 and UmbL2. The main differences between them were in the sizes of spikes and spikelets, and culm diameter. UmbL1 is divided into two sublineages, UmbL1e and UmbL1w. These genetic differences corresponded to geographic distributions. UmbL1e, UmbL1w, and UmbL2 are found in Turkey, Iran/Iraq, and Greece, respectively. Although UmbL1e and UmbL1w were genetically similar, flowering time and other morphological traits were more distinct between these sublineages than those between the lineages. This discrepancy can be explained by the latitudinal and longitudinal differences in habitats. Specifically, latitudinal clines of flowering time were clearly observed in Ae. umbellulata, strongly correlated with solar radiation in the winter season. This observation implies that latitudinal differences are a factor in differences in the flowering times of Ae. umbellulata. Differences in flowering time could influence other morphological differences and promote genetic divergence between sublineages.


Subject(s)
Aegilops , Aegilops/genetics , Phylogeny , Bayes Theorem , Triticum/genetics , Polymorphism, Single Nucleotide , Poaceae/genetics
2.
NAR Genom Bioinform ; 5(3): lqad067, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37448590

ABSTRACT

Although allopolyploid species are common among natural and crop species, it is not easy to distinguish duplicated genes, known as homeologs, during their genomic analysis. Yet, cost-efficient RNA sequencing (RNA-seq) is to be developed for large-scale transcriptomic studies such as time-series analysis and genome-wide association studies in allopolyploids. In this study, we employed a 3' RNA-seq utilizing 3' untranslated regions (UTRs) containing frequent mutations among homeologous genes, compared to coding sequence. Among the 3' RNA-seq protocols, we examined a low-cost method Lasy-Seq using an allohexaploid bread wheat, Triticum aestivum. HISAT2 showed the best performance for 3' RNA-seq with the least mapping errors and quick computational time. The number of detected homeologs was further improved by extending 1 kb of the 3' UTR annotation. Differentially expressed genes in response to mild cold treatment detected by the 3' RNA-seq were verified with high-coverage conventional RNA-seq, although the latter detected more differentially expressed genes. Finally, downsampling showed that even a 2 million sequencing depth can still detect more than half of expressed homeologs identifiable by the conventional 32 million reads. These data demonstrate that this low-cost 3' RNA-seq facilitates large-scale transcriptomic studies of allohexaploid wheat and indicate the potential application to other allopolyploid species.

3.
PLoS One ; 18(4): e0284408, 2023.
Article in English | MEDLINE | ID: mdl-37104480

ABSTRACT

Allopolyploid speciation is a major evolutionary process in wheat (Triticum spp.) and the related Aegilops species. The generation of synthetic polyploids by interspecific crosses artificially reproduces the allopolyploidization of wheat and its relatives. These synthetic polyploids allow breeders to introduce agriculturally important traits into durum and common wheat cultivars. This study aimed to evaluate the genetic and phenotypic diversity in wild einkorn Triticum monococcum ssp. aegilopoides (Link) Thell., to generate a set of synthetic hexaploid lines containing the various Am genomes from wild einkorn, and to reveal their trait characteristics. We examined the genetic diversity of 43 wild einkorn accessions using simple sequence repeat markers covering all the chromosomes and revealed two genetically divergent lineages, L1 and L2. The genetic divergence between these lineages was linked to their phenotypic divergence and their habitats. L1 accessions were characterized by early flowering, fewer spikelets, and large spikelets compared to L2 accessions. These trait differences could have resulted from adaptation to their different habitats. We then developed 42 synthetic hexaploids containing the AABBAmAm genome through interspecific crosses between T. turgidum cv. Langdon (AABB genome) as the female parent and the wild einkorn accessions (AmAm genome) as the male parents. Two of the 42 AABBAmAm synthetic hexaploids exhibited hybrid dwarfness. The phenotypic divergence between L1 and L2 accessions of wild einkorn, especially for days to flowering and spikelet-related traits, significantly reflected phenotypic differences in the synthetic hexaploids. The differences in plant height and internodes between the lineages were more distinct in the hexaploid backgrounds. Furthermore, the AABBAmAm synthetic hexaploids had longer spikelets and grains, long awns, high plant heights, soft grains, and late flowering, which are distinct from other synthetic hexaploid wheat lines such as AABBDD. Utilization of various Am genomes of wild einkorn resulted in wide phenotypic diversity in the AABBAmAm synthetic hexaploids and provides promising new breeding materials for wheat.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Poaceae/genetics , Phenotype , Polyploidy , Genome, Plant
4.
Plant Cell Physiol ; 62(1): 8-27, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33244607

ABSTRACT

Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.


Subject(s)
Disease Resistance/genetics , Flowers/growth & development , Genes, Plant/genetics , Genome, Plant/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Cytogenetics , Asia, Eastern , Flowers/genetics , Fusarium , Genes, Plant/physiology , Genetic Association Studies , Genetic Variation/genetics , Genetic Variation/physiology , Genome, Plant/physiology , Genotype , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Triticum/growth & development , Triticum/immunology , Triticum/physiology
5.
PLoS One ; 15(4): e0231129, 2020.
Article in English | MEDLINE | ID: mdl-32240263

ABSTRACT

Aegilops umbellulata is a wild diploid wheat species with the UU genome that is an important genetic resource for wheat breeding. To exploit new synthetic allohexaploid lines available as bridges for wheat breeding, a total of 26 synthetic hexaploid lines were generated through crossing between the durum wheat cultivar Langdon and 26 accessions of Ae. umbellulata. In nascent synthetic hexaploids with the AABBUU genome, the presence of the set of seven U-genome chromosomes was confirmed with U-genome chromosome-specific markers developed based on RNA-seq-derived data from Ae. umbellulata. The AABBUU synthetic hexaploids showed large variations in flowering- and morphology-related traits, and these large variations transmitted well from the parental Ae. umbellulata accessions. However, the variation ranges in most traits examined were reduced under the AABBUU hexaploid background compared with under the diploid parents. The AABBUU and AABBDD synthetic hexaploids were clearly discriminated by several morphological traits, and an increase of plant height and in the number of spikes and a decrease of spike length were commonly observed in the AABBUU synthetics. Thus, interspecific differences in several morphological traits between Ae. umbellulata and A. tauschii largely affected the basic plant architecture of the synthetic hexaploids. In conclusion, the AABBUU synthetic hexaploid lines produced in the present study are useful resources for the introgression of desirable genes from Ae. umbellulata to common wheat.


Subject(s)
Aegilops/genetics , Crosses, Genetic , Diploidy , Genetic Variation , Genome, Plant , Polyploidy , Triticum/genetics , Chromosomes, Plant/genetics , Ecotype , Genetic Markers , Hardness , Phenotype , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis , Quantitative Trait, Heritable , Seeds/genetics , Species Specificity
6.
Mol Genet Genomics ; 294(5): 1327-1341, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31187273

ABSTRACT

A survey of genome-wide polymorphisms between closely related species is required to understand the molecular basis of the evolutionary differentiation of their genomes. Two wild diploid wheat species, namely Triticum monococcum ssp. aegilopoides and T. urartu, are closely related and harbour the Am and A genomes, respectively. The A-genome donor of tetraploid and common wheat is T. urartu, and T. monococcum ssp. monococcum is the cultivated form derived from the wild einkorn wheat subspecies aegilopoides. Although subspecies aegilopoides has been a useful genetic resource in wheat breeding, genome-wide molecular markers for this subspecies have not been sufficiently developed. Here, we describe the detection of genome-wide polymorphisms such as single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) from RNA sequencing (RNA-seq) data of leaf transcripts in 15 accessions of the two diploid wheat species. The SNPs and indels, detected using the A genome of common wheat as the reference genome, covered the entire chromosomes of these species. The polymorphism information facilitated a comparison of the genetic diversity of einkorn wheat with that of two related diploid Aegilops species, namely, Ae. tauschii and Ae. umbellulata. Cleaved amplified polymorphic sequence (CAPS) markers converted from the SNP data were efficiently developed to confirm the addition of aegilopoides subspecies chromosomes to tetraploid wheat in nascent allohexaploid lines with AABBAmAm genomes. In addition, the CAPS markers permitted linkage map construction in mapping populations of aegilopoides subspecies accessions. Therefore, these RNA-seq data provide information for further breeding of closely related species with no reference genome sequence data.


Subject(s)
Genetic Markers/genetics , Plant Leaves/genetics , Polymorphism, Single Nucleotide/genetics , Triticum/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Diploidy , Genetic Linkage/genetics , Genome, Plant/genetics , Genome-Wide Association Study/methods , Phylogeny , Sequence Analysis, RNA/methods , Tetraploidy
7.
BMC Plant Biol ; 18(1): 271, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30409135

ABSTRACT

BACKGROUND: Aegilops umbellulata Zhuk. (2n = 14), a wild diploid wheat relative, has been the source of trait improvement in wheat breeding. Intraspecific genetic variation of Ae. umbellulata, however, has not been well studied and the genomic information in this species is limited. RESULTS: To develop novel genetic markers distributed over all chromosomes of Ae. umbellulata and to evaluate its genetic diversity, we performed RNA sequencing of 12 representative accessions and reconstructed transcripts by de novo assembly of reads for each accession. A large number of single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were obtained and anchored to the pseudomolecules of Ae. tauschii and barley (Hordeum vulgare L.), which were regarded as virtual chromosomes of Ae. umbellulata. Interestingly, genetic diversity in Ae. umbellulata was higher than in Ae. tauschii, despite the narrow habitat of Ae. umbellulata. Comparative analyses of nucleotide polymorphisms between Ae. umbellulata and Ae. tauschii revealed no clear lineage differentiation and existence of alleles with rarer frequencies predominantly in Ae. umbellulata, with patterns clearly distinct from those in Ae. tauschii. CONCLUSIONS: The anchored SNPs, covering all chromosomes, provide sufficient genetic markers between Ae. umbellulata accessions. The alleles with rarer frequencies might be the main source of the high genetic diversity in Ae. umbellulata.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant/genetics , Triticum/genetics , Chromosome Mapping , Diploidy , Genetic Linkage/genetics , Hordeum/genetics , Plant Breeding , Poaceae/genetics
8.
Plant Mol Biol ; 95(6): 625-645, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29090430

ABSTRACT

KEY MESSAGE: Hybrid abnormalities, severe growth abortion and grass-clump dwarfism, were found in the tetraploid wheat/Aegilops umbellulata hybrids, and the gene expression changes were conserved in the hybrids with those in other wheat synthetic hexaploids. Aegilops umbellulata Zhuk., a diploid goatgrass species with a UU genome, has been utilized as a genetic resource for wheat breeding. Here, we examine the reproductive barriers between tetraploid wheat cultivar Langdon (Ldn) and various Ae. umbellulata accessions by conducting interspecific crossings. Through systematic cross experiments, three types of hybrid incompatibilities were found: seed production failure in crosses, hybrid growth abnormalities and sterility in the ABU hybrids. Hybrid incompatibilities were widely distributed over the entire range of the natural species, and in about 50% of the cross combinations between tetraploid Ldn and Ae. umbellulata accessions, ABU F1 hybrids showed one of two abnormal growth phenotypes: severe growth abortion (SGA) or grass-clump dwarfism. Expression of the shoot meristem maintenance-related and cell cycle-related genes was markedly repressed in crown tissues of hybrids showing SGA, suggesting dysfunction of mitotic cell division in the shoot apices. The grass-clump dwarf phenotype may be explained by down-regulation of wheat APETALA1-like MADS box genes, which act as flowering promoters, and altered expression in crown tissues of the miR156/SPLs module, which controls tiller number and branching. These gene expression changes in growth abnormalities were well conserved between the Ldn/Ae. umbellulata plants and interspecific hybrids from crosses of Ldn and wheat D-genome progenitor Ae. tauschii.


Subject(s)
Crosses, Genetic , Diploidy , Hybridization, Genetic , Poaceae/genetics , Tetraploidy , Triticum/genetics , Fertility/genetics , Gene Expression Regulation, Plant , Gene Ontology , Genes, Plant , Geography , MicroRNAs/genetics , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...