Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Pharm Bull ; 46(2): 177-186, 2023.
Article in English | MEDLINE | ID: mdl-36724946

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disease that involves an expansion of the CAG repeats of the Huntingtin (HTT) gene, but the disease onset and progression do not necessarily correspond to the extent of CAG repeats. Decreased mitochondrial complex II activity has also been reported to be closely associated with disease pathogenesis. Here, we examined the mechanism of cell death induced by 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, using striatal cells (STHdhQ111 cells) derived from HD model mice with mutant HTT carrying the CAG repeat extended. Treatment with 3-NP (5 mM) enhanced cell death in STHdhQ111 compared to STHdhQ7 cells with normal HTT. Ferrostatin-1, an inhibitor of ferroptosis, and deferoxamine, an iron chelator, markedly inhibited 3-NP-induced cell death in both the STHdh cell lines. On the other hands, cell death was not abrogated by a broad-spectrum caspase inhibitor, Z-VAD-FMK, indicating that this cell death was caspase-independent. Cell death caused by 3-NP is suggested to be due to ferroptosis. Furthermore, 3-NP-induced cell death was markedly inhibited by GSK2795039, a reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) inhibitor, suggesting that cell death is mainly mediated by intracellular superoxide anion (O2-) production through NOX2. Furthermore, a mitochondria-targeted superoxide dismutase mimetic (Mito-TEMPO), partially inhibited 3-NP-induced cell death, suggesting that O2- production in the mitochondria is partially responsible for cell death. These results indicate that 3-NP-induced cell death in the STHdhQ111 cells is caspase-independent, non-apoptotic, and that ferroptotic cell death is mainly induced via NOX2 activation.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Mice , Animals , Reactive Oxygen Species/metabolism , Mice, Transgenic , Nuclear Proteins/genetics , Nerve Tissue Proteins/metabolism , Caspases/metabolism , Huntington Disease/chemically induced , Huntington Disease/genetics , Huntington Disease/metabolism
2.
J Pharmacol Sci ; 147(4): 367-375, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34663519

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by CAG repeat expansion in the huntingtin (HTT) gene. Here, we examined the effects of antioxidants on 3-nitropropionic acid (3-NP; a mitochondrial complex II inhibitor)-induced mitochondrial dysfunction and cell death in STHdhQ111 striatal cells carrying homozygous mutant HTT with extended CAG repeats compared with those in STHdhQ7 striatal cells. 3-NP reduced cell viability and increased cell death both in STHdhQ111 and STHdhQ7, and the cytotoxicity was markedly attenuated by antioxidants (N-acetyl-l-cysteine and edaravone). Furthermore, 3-NP increased intracellular reactive oxygen species (ROS) production in both cell lines, and this increase was inhibited by antioxidants. Mitochondrial ROS was also increased by 3-NP in STHdhQ111 but not in STHdhQ7, and this increase was significantly inhibited by edaravone. Mitochondrial membrane potential (MMP) was lower in STHdhQ111 than that in STHdhQ7, and antioxidants prevented 3-NP-induced MMP decrease in STHdhQ111.3-NP enhanced oligomerization of dynamin-related protein 1 (Drp1), a protein that promotes mitochondrial fission in both cells, and both antioxidants prevented the increase in oligomerization. These results suggest that reduced mitochondrial complex II activity enhances cell death via intracellular ROS production and Drp1 oligomerization in striatal cells with mutant HTT and antioxidants may reduce striatal cell death.


Subject(s)
Antioxidants/pharmacology , Cell Death/drug effects , Cell Death/genetics , Electron Transport Complex II/metabolism , Huntingtin Protein/genetics , Huntington Disease/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Mutation/genetics , Reactive Oxygen Species/metabolism , Trinucleotide Repeat Expansion/genetics , Animals , Edaravone/pharmacology , Electron Transport Complex II/antagonists & inhibitors , Membrane Potential, Mitochondrial/drug effects , Mice, Transgenic , Mitochondrial Dynamics/drug effects , Nitro Compounds/adverse effects , Nitro Compounds/antagonists & inhibitors , Propionates/adverse effects , Propionates/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...