Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000918

ABSTRACT

In this study, we developed and demonstrated a millimeter-wave electric field imaging system using an electro-optic crystal and a highly sensitive polarization measurement technique using a polarization image sensor, which was fabricated using a 0.35-µm standard CMOS process. The polarization image sensor was equipped with differential amplifiers that amplified the difference between the 0° and 90° pixels. With the amplifier, the signal-to-noise ratio at low incident light levels was improved. Also, an optical modulator and a semiconductor optical amplifier were used to generate an optical local oscillator (LO) signal with a high modulation accuracy and sufficient optical intensity. By combining the amplified LO signal and a highly sensitive polarization imaging system, we successfully performed millimeter-wave electric field imaging with a spatial resolution of 30×60 µm at a rate of 1 FPS, corresponding to 2400 pixels/s.

2.
Sensors (Basel) ; 24(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38400406

ABSTRACT

We propose and demonstrate a method for equivalent time sampling using image sensors to selectively detect only the target frequency. Shortening the exposure time of the image sensor and using equivalent time sampling allows for the detection of frequency components that are higher than the frame rate. However, the imaging system in our previous work was also sensitive to the frequency component at 1/4 of the frame rate. In this study, we control the phase relationship between the exposure time and observed signal by inserting an additional interval once every four frames to detect the target frequency selectively. With this technique, we conducted electric field imaging based on the electro-optic effect under high noise conditions in the low-frequency band to which the conventional method is sensitive. The results demonstrated that the proposed method improved the signal-to-noise ratio.

3.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003493

ABSTRACT

Dopamine (DA)'s relationship with addiction is complex, and the related pathways in the mesocorticolimbic system are used to deliver DA, regulating both behavioral and perceptual actions. Specifically, the mesolimbic pathway connecting the ventral tegmental area (VTA) and the nucleus accumbens (NAc) is crucial in regulating memory, emotion, motivation, and behavior due to its responsibility to modulate dopamine. To better investigate the relationship between DA and addiction, more advanced mapping methods are necessary to monitor its production and propagation accurately and efficiently. In this study, we incorporate dLight1.2 adeno-associated virus (AAV) into our latest CMOS (complementary metal-oxide semiconductor) imaging platform to investigate the effects of two pharmacological substances, morphine and cocaine, in the NAc using adult mice. By implanting our self-fabricated CMOS imaging device into the deep brain, fluorescence imaging of the NAc using the dLight1.2 AAV allows for the visualization of DA molecules delivered from the VTA in real time. Our results suggest that changes in extracellular DA can be observed with this adapted system, showing potential for new applications and methods for approaching addiction studies. Additionally, we can identify the unique characteristic trend of DA release for both morphine and cocaine, further validating the underlying biochemical mechanisms used to modulate dopaminergic activation.


Subject(s)
Cocaine , Mice , Animals , Dopamine/metabolism , Morphine/pharmacology , Morphine/metabolism , Nucleus Accumbens/metabolism , Ventral Tegmental Area/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...