Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 15(11): 2630-2639, 2016 11.
Article in English | MEDLINE | ID: mdl-27535969

ABSTRACT

The FGFR signaling pathway has a crucial role in proliferation, survival, and migration of cancer cells, tumor angiogenesis, and drug resistance. FGFR genetic abnormalities, such as gene fusion, mutation, and amplification, have been implicated in several types of cancer. Therefore, FGFRs are considered potential targets for cancer therapy. E7090 is an orally available and selective inhibitor of the tyrosine kinase activities of FGFR1, -2, and -3. In kinetic analyses of the interaction between E7090 and FGFR1 tyrosine kinase, E7090 associated more rapidly with FGFR1 than did the type II FGFR1 inhibitor ponatinib, and E7090 dissociated more slowly from FGFR1, with a relatively longer residence time, than did the type I FGFR1 inhibitor AZD4547, suggesting that its kinetics are more similar to the type V inhibitors, such as lenvatinib. E7090 showed selective antiproliferative activity against cancer cell lines harboring FGFR genetic abnormalities and decreased tumor size in a mouse xenograft model using cell lines with dysregulated FGFR Furthermore, E7090 administration significantly prolonged the survival of mice with metastasized tumors in the lung. Our results suggest that E7090 is a promising candidate as a therapeutic agent for the treatment of tumors harboring FGFR genetic abnormalities. It is currently being investigated in a phase I clinical trial. Mol Cancer Ther; 15(11); 2630-9. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Gene Silencing , Humans , Mice , Mortality , Mutation , Neoplasm Metastasis , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation , Protein Kinase Inhibitors/chemistry , RNA Interference , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Xenograft Model Antitumor Assays
2.
Eur J Pharmacol ; 548(1-3): 181-7, 2006 Oct 24.
Article in English | MEDLINE | ID: mdl-16973152

ABSTRACT

Dipeptidyl peptidase IV (DPP-IV) inhibitors are expected to become a useful new class of anti-diabetic agent. The aim of the present study is to characterize the in vitro and in vivo profile of E3024, 3-but-2-ynyl-5-methyl-2-piperazin-1-yl-3,5-dihydro-4H-imidazo[4,5-d]pyridazin-4-one tosylate, which is a novel imidazopyridazinone-derived DPP-IV inhibitor. E3024 inhibited recombinant human and mouse DPP-IV with IC50 values of approximately 100 nM. E3024 inhibited DPP-IV in human, mouse, rat and canine plasma with IC50 values of 140 to 400 nM. In contrast, E3024 did not inhibit DPP-8 or DPP-9 activity. Kinetic analysis indicated that E3024 is a competitive DPP-IV inhibitor. In Zucker fa/fa rats, E3024 (1 mg/kg) reduced glucose excursion after glucose load, with increases in plasma insulin and active glucagon-like peptide-1 levels. In fasted rats, this compound did not cause hypoglycemia. In a rat 4-week toxicological study, no notable changes were found at doses up to 750 mg/kg. The present preclinical studies indicate that E3024 is a novel selective DPP-IV inhibitor with anti-diabetic effects and a good safety profile.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Imidazoles/pharmacology , Protease Inhibitors/pharmacology , Pyridazines/pharmacology , Tosyl Compounds/pharmacology , Animals , Blood Glucose/analysis , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/blood , Dogs , Female , Glucagon-Like Peptide 1/blood , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/toxicity , Imidazoles/pharmacokinetics , Imidazoles/toxicity , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/pathology , Male , Mice , No-Observed-Adverse-Effect Level , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/toxicity , Pyridazines/pharmacokinetics , Pyridazines/toxicity , Rats , Rats, Sprague-Dawley , Rats, Wistar , Rats, Zucker , Recombinant Proteins/metabolism , Tosyl Compounds/pharmacokinetics , Tosyl Compounds/toxicity
3.
Int J Neural Syst ; 15(6): 435-43, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16385633

ABSTRACT

The complex-valued backpropagation algorithm has been widely used in fields of dealing with telecommunications, speech recognition and image processing with Fourier transformation. However, the local minima problem usually occurs in the process of learning. To solve this problem and to speed up the learning process, we propose a modified error function by adding a term to the conventional error function, which is corresponding to the hidden layer error. The simulation results show that the proposed algorithm is capable of preventing the learning from sticking into the local minima and of speeding up the learning.


Subject(s)
Algorithms , Learning , Neural Networks, Computer , Artificial Intelligence , Computer Simulation , Mathematics , Signal Processing, Computer-Assisted
4.
Chem Pharm Bull (Tokyo) ; 52(9): 1071-81, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15340192

ABSTRACT

As part of a series of studies to discover new topoisomerase II inhibitors, novel pyrimidoacridones, pyrimidophenoxadines, and pyrimidocarbazoles were synthesized, and in vitro and in vivo antitumor activities and DNA-protein and/or DNA-topoisomerase II cross-linking activity as an indicator of topoisomerase II-DNA cleavable complex formation were evaluated. The pyrimidocarbazoles possessed high in vitro and in vivo potencies. Compound 26 (ER-37326), 8-acetyl-2-[2-(dimethylamino)ethyl]-1H-pyrimido[5,6,1-jk]carbazole-1,3(2H)-dione, showed in vitro growth inhibitory activity with respective IC(50) values of 0.049 microM and 0.35 microM against mouse leukemia P388 and human oral cancer KB. In vivo, this compound inhibited the tumor growth of mouse sarcoma M5076 implanted into mice with T/C values of 42% and 13% at 3.13 and 6.25 mg/kg/d respectively without significantly affecting the body weight. In addition, compound 26 (ER-37326) increased the formation of DNA-topoisomerase II cross-linking in P388 cells.


Subject(s)
Acridines/chemical synthesis , Antineoplastic Agents/chemical synthesis , Carbazoles/chemical synthesis , Pyrimidinones/chemical synthesis , Topoisomerase II Inhibitors , Acridines/pharmacology , Animals , Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Cell Line, Tumor , DNA Topoisomerases, Type II/chemistry , Dose-Response Relationship, Drug , Humans , KB Cells , Leukemia P388/drug therapy , Mice , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Pyrimidinones/pharmacology
5.
Cancer Sci ; 94(1): 119-24, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12708485

ABSTRACT

We have discovered a novel topoisomerase II (topo II) poison, ER-37328 (12,13-dihydro-5-[2-(dimethylamino)ethyl]-4H-benzo[c]pyrimido[5,6,1-jk]carbazole-4,6,10(5H,11H)-trione hydrochloride), which shows potent tumor regression activity against Colon 38 cancer inoculated s.c. Here, we describe studies on the cell-killing activity against a panel of human cancer cell lines and the antitumor activity of ER-37328 against human tumor xenografts. In a cell-killing assay involving 1-h drug treatment, ER-37328 showed more potent cell-killing activity (50% lethal concentrations (LC50s) ranging from 2.9 to 20 microM) than etoposide (LC50s>60 microM) against a panel of human cancer cell lines. ER-37328 induced double-stranded DNA cleavage, an indicator of topo II-DNA cleavable complex formation, within 1 h in MX-1 cells, and the extent of cleavage showed a bell-shaped relationship to drug concentration, with the maximum at 2.5 microM. After removal of the drug (2.5 microM) at 1 h, incubation was continued in drug-free medium, and the amount of cleaved DNA decreased. However, at 10 microM, which is close to the LC50s against MX-1 cells, DNA cleavage was not detected immediately after 1-h treatment, but appeared and increased after drug removal. This result may explain the potent cell-killing activity of ER-37328 in the 1-h treatment. In vivo, ER-37328 showed potent tumor regression activity against MX-1 and NS-3 tumors. Moreover, ER-37328 had a different antitumor spectrum from irinotecan or cisplatin against human tumor xenografts. In conclusion, ER-37328 is a promising topo II poison with strong cell killing activity in vitro and tumor regression activity in vivo, and is a candidate for the clinical treatment of malignant solid tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Carbazoles/therapeutic use , Enzyme Inhibitors/therapeutic use , Neoplasm Proteins/antagonists & inhibitors , Pyrimidines/therapeutic use , Topoisomerase II Inhibitors , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/pathology , Carbazoles/pharmacology , Colonic Neoplasms/pathology , DNA Damage , DNA, Neoplasm/analysis , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Etoposide/therapeutic use , Female , Humans , Lung Neoplasms/pathology , Macromolecular Substances , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Binding/drug effects , Pyrimidines/pharmacology , Stomach Neoplasms/pathology , Tumor Cells, Cultured/drug effects , Xenograft Model Antitumor Assays
6.
J Lipid Res ; 44(1): 128-35, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12518031

ABSTRACT

We recently demonstrated that squalene synthase (SQS) inhibitors reduce plasma triglyceride through an LDL receptor-independent mechanism in Watanabe heritable hyperlipidemic rabbits (Hiyoshi et al. 2001. Eur. J. Pharmacol. 431: 345-352). The present study deals with the mechanism of the inhibition of triglyceride biosynthesis by the SQS inhibitors ER-27856 and RPR-107393 in rat primary cultured hepatocytes. Atorvastatin, an HMG-CoA reductase inhibitor, had no effect on triglyceride biosynthesis, but reversed the inhibitory effect of the SQS inhibitors. A squalene epoxidase inhibitor, NB-598, affected neither triglyceride biosynthesis nor its inhibition by ER-27856 and RPR-107393. The reduction of triglyceride biosynthesis by ER-27856 and RPR-107393 was potentiated by mevalonolactone supplementation. Treatment of hepatocytes with farnesol and its derivatives reduced triglyceride biosynthesis. In addition, we found that ER-27856 and RPR-107393 significantly reduced the incorporation of [1-(14)C]acetic acid into oleic acid, but not the incorporation of [1-(14)C]oleic acid into triglyceride. Though ER-27856 and RPR-107393 increased mitochondrial fatty acid beta-oxidation, the inhibition of beta-oxidation by RS-etomoxir had little effect on their inhibition of triglyceride biosynthesis. These results suggest that SQS inhibitors reduce triglyceride biosynthesis by suppressing fatty acid biosynthesis via an increase in intracellular farnesol and its derivatives.


Subject(s)
Enzyme Inhibitors/pharmacology , Farnesol/metabolism , Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Hepatocytes/drug effects , Hepatocytes/metabolism , Triglycerides/biosynthesis , Animals , Atorvastatin , Benzylamines/pharmacology , Cells, Cultured , Cholesterol/biosynthesis , Farnesol/analogs & derivatives , Farnesol/pharmacology , Heptanoic Acids/pharmacology , Lipid Metabolism , Male , Oxidation-Reduction , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Thiophenes/pharmacology
7.
Mol Cancer Ther ; 1(3): 169-75, 2002 Jan.
Article in English | MEDLINE | ID: mdl-12467211

ABSTRACT

DNA topoisomerase II has been shown to be an important therapeutic target in cancer chemotherapy. Here, we describe studies on the antitumor activity of a novel topoisomerase II inhibitor, ER-37328 [12,13-dihydro-5-[2-(dimethylamino)ethyl]-4H-benzo[c]pyrimido[5,6,1- jk]carbazole-4,6,10(5H,11H)-trione hydrochloride]. ER-37328 inhibited topoisomerase II activity at 10 times lower concentration than etoposide in relaxation assay and induced double-strand DNA cleavage within 1 h in murine leukemia P388 cells, in a bell-shaped manner with respect to drug concentration. The maximum amount of DNA cleavage was obtained at 2 microM. Like etoposide, ER-37328 (2 microM) induced topoisomerase II-DNA cross-linking in P388 cells. A spectroscopic study of ER-37328 mixed with DNA demonstrated that ER-37328 has apparent binding activity to DNA. ER-37328 showed potent growth-inhibitory activity against a panel of 21 human cancer cell lines [mean (50% growth-inhibitory concentration) GI50 = 59 nM]. COMPARE analysis according to the National Cancer Institute screening protocol showed that the pattern of the growth-inhibitory effect of ER-37328 was similar to that of etoposide, but different from that of doxorubicin. Studies on etoposide-, amsacrine [4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA)]-, and camptothecin-resistant P388 cell lines showed that: (a) etoposide- and m-AMSA-resistant P388 cell lines were partially resistant to ER-37328 compared with the parental cell line; and (b) a camptothecin-resistant cell line showed no cross-resistance to ER-37328. In addition, ER-37328 overcame P-glycoprotein-mediated resistance. In vivo, ER-37328 produced potent tumor regression of Colon 38 carcinoma inoculated s.c., and its activity was superior to that of etoposide or doxorubicin. These results indicate that ER-37328 inhibits topoisomerase II activity through the formation of topoisomerase II-DNA cleavable complex and has potent antitumor activity both in vitro and in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Colonic Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , Topoisomerase II Inhibitors , Amsacrine/pharmacology , Animals , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Cross-Linking Reagents , DNA, Neoplasm/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Etoposide/pharmacology , Female , Humans , In Vitro Techniques , Leukemia P388/drug therapy , Leukemia P388/enzymology , Leukemia P388/pathology , Mice , Mice, Inbred C57BL , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/enzymology , Tumor Cells, Cultured/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...