Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oral Dis ; 28(6): 1674-1681, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33811796

ABSTRACT

OBJECTIVES: Signals from inflamed tooth pulp activate thalamic neurons to evoke central sensitization. We aimed to gain insights into the mechanisms mediating the early phase of pulpal inflammation-induced thalamic neural and glial activation. MATERIALS AND METHODS: Pulpal inflammation was induced via the application of mustard oil (MO) to the upper first molar of Wistar rats with local anesthesia (LA) or saline injection. After 0.5, 1, 2, and 24 hr, contralateral thalami were subjected to microarrays, a real-time polymerase chain reaction and immunohistochemistry to identify differentially expressed genes and assess potassium voltage-gated channel subfamily A member 1 (Kv1.1)-expressing axons and glial fibrillary acidic protein (GFAP)-expressing astrocytes. RESULTS: The Kv1.1 gene (Kcna1) was down-regulated and the density of Kv1.1-expressing axons decreased in non-anesthetized rats, but not in anesthetized rats 1 hr after the MO treatment. The density of GFAP-expressing astrocytes increased in both groups until 24 hr after the MO treatment, with a greater increase being observed in the saline-injection group than in the LA group. CONCLUSIONS: MO induced the transient down-regulation of Kcna1, transiently reduced the density of Kv1.1-expressing axons, and increased astrocytes in thalami within 1 hr of pulpal application. These results suggest central sensitization represented by neuronal hyperexcitability and astrocyte activation.


Subject(s)
Dental Pulp , Thalamus , Animals , Down-Regulation , Inflammation , Rats , Rats, Wistar
2.
J Endod ; 46(7): 943-949, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32467021

ABSTRACT

INTRODUCTION: This study aimed to examine the process of reinnervation during coronal pulp tissue regeneration in a rat model in which rat bone marrow mesenchymal stem cells were implanted in pulpotomized molars. METHODS: The maxillary first molars of Wistar rats were pulpotomized, and preformed biodegradable porous poly L-lactic acid scaffolds and hydrogel carrying rat bone marrow mesenchymal stem cells were implanted in the pulp chamber. After 3, 7, and 14 days, the implanted teeth were processed for histologic analysis; immunoperoxidase staining for protein gene product 9.5 (a general neuronal marker), calcitonin gene-related peptide (CGRP), or substance P (SP); and real-time polymerase chain reaction for nerve growth factor (NGF) and growth-associated protein 43 (GAP-43) messenger RNA (mRNA) expression. RESULTS: Histologic analysis of the implanted region revealed sparse cellular distribution at 3 days, pulplike tissue with a thin dentin bridge-like structure at 7 days, and dentin bridge-like mineralized tissue formation and resorption of most scaffolds at 14 days. Protein gene product 9.5 and CGRP-immunoreactive nerve fibers showed the lowest density at 3 days and significantly increased until 14 days when the CGRP-immunoreactive fibers reached normal levels. SP-immunoreactive nerve fibers showed the highest density at 7 days and decreased to normal levels at 14 days. NGF mRNA increased with time, whereas GAP-43 mRNA levels peaked at 3 days and subsequently dropped until 14 days. CONCLUSIONS: Regeneration/remodeling of SP-immunoreactive and CGRP-immunoreactive nerve fibers with increased mRNA expression of NGF and GAP-43 occurred in a rat model of coronal pulp tissue engineering with bone marrow mesenchymal stem cells.


Subject(s)
Dental Pulp , Tissue Engineering , Animals , Molar , Nerve Regeneration , Rats , Rats, Wistar
3.
Oral Dis ; 26(6): 1275-1283, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32248596

ABSTRACT

OBJECTIVES: We aimed to investigate whether the mesenchymal stem cell-endothelial cell crosstalk enhances angiogenic factor expression via nuclear factor-kappa B (NF-κB)-dependent mechanisms. MATERIALS AND METHODS: Human dermal microvascular endothelial cells (HDMECs) and stem cells from human exfoliated deciduous teeth (SHEDs) were cocultured for 96 hr, in the presence of NF-κB decoy oligodeoxynucleotides (ODNs) or scramble (control). Vascular endothelial cell growth factor (VEGF) and phospho-NF-κB p65 were measured with enzyme-linked immunosorbent assay. Angiogenesis-related gene expression was analyzed with microarray analysis followed by real-time polymerase chain reaction. Tube formation assay was conducted in the presence of NF-κB decoy. RESULTS: The VEGF and phospho-NF-κB p65 levels were significantly higher in the coculture with NF-κB decoy scramble than in single culture and coculture with NF-κB decoy ODN. Microarray analysis of SHEDs and HDMECs with NF-κB decoy scramble showed higher expression of proangiogenic genes, Bcl-2, NF-κB1, VEGFA, CXCL8, and CXCR1, and lower expression of proapoptotic genes, Bax and Caspase 9, compared to cells with NF-κB decoy ODN. Real-time PCR results for Bcl-2 and CXCL8 showed a similar trend. Tube formation assay showed more tube development in the presence of NF-κB decoy scramble. CONCLUSION: The SHED-HDMEC crosstalk enhanced proangiogenic factor expression via NF-κB-dependent pathways.

4.
Stem Cell Res ; 38: 101457, 2019 07.
Article in English | MEDLINE | ID: mdl-31082676

ABSTRACT

In our previous work, we established an in vivo coronal pulp regeneration model in which biodegradable hydrogel-made scaffolds carrying rat bone marrow mesenchymal stem cells (BM-MSCs) were implanted in the coronal pulp chamber of pulpotomized rat maxillary first molars. In this study, we investigated the in vivo fate of LacZ-labeled BM-MSCs in our coronal pulp regeneration model. BM-MSCs were nucleofected with pVectOZ-LacZ plasmid encoding ß-galactosidase 1 day before implantation, and the LacZ-transfected BM-MSCs were implanted into the pulpotomized pulp chamber with biodegradable preformed scaffold-hydrogel constructs. Empty vector was used as a control. After 3 and 14 days, the molars were retrieved and subjected to ß-galactosidase staining. At 3 days, ß-galactosidase-expressing cells with a round profile were located mainly around the scaffold. At 14 days, when the pulp-like tissue had been generated, the majority of ß-galactosidase-expressing cells were detected under the newly formed dentin bridge-like structure, where nestin-expressing odontoblast-like cells were arranged. Immunoreactivity for dentin sialoprotein, a marker of mature odontoblasts, was strongly detected under the original dentin. No ß-galactosidase staining was observed in the control group. Thus, we demonstrated that BM-MSCs survived for 2 weeks after implantation and colonized within the site of potential cytodifferentiation. Our findings indicated that BM-MSCs could differentiate into cells involved in mineralized tissue formation in the functionally relevant region.


Subject(s)
Bone Marrow Cells/metabolism , Dental Pulp/physiology , Dentin/physiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Molar/physiology , Regeneration , Allografts , Animals , Bone Marrow Cells/pathology , Dental Pulp/pathology , Dentin/pathology , Female , Hydrogels/chemistry , Mesenchymal Stem Cells/pathology , Rats , Rats, Inbred F344 , Tissue Scaffolds/chemistry
5.
J Prosthodont Res ; 61(4): 426-431, 2017 10.
Article in English | MEDLINE | ID: mdl-28237699

ABSTRACT

PURPOSE: The purpose of this study was to clarify the effect of the bitterness of food on muscular activity and masticatory movement. METHODS: Twenty healthy subjects were asked to chew a non-bitter gummy jelly and a bitter gummy jelly on their habitual chewing side. The masseter muscular activity and the movement of mandibular incisal point were recorded simultaneously. For all cycles excluding the first cycle, parameters representing the muscular activity (total integral value and integral value per cycle) and masticatory movement (path, rhythm, and stability) were calculated and compared between the two types of gummy jellies. RESULTS: The total integral value of masseter muscular activity during the chewing of bitter gummy jelly was significantly smaller than during the chewing of non-bitter gummy jelly, however, no definite trends in the integral value per cycle and the stability of movement were observed. The parameters representing the movement path tended to be small during the chewing of bitter gummy jelly than during the chewing of non-bitter gummy jelly. The masticatory width was significantly smaller during the chewing of bitter gummy jelly. The parameters representing the rhythm of movement were significantly longer during the chewing of bitter gummy jelly than during the chewing of non-bitter gummy jelly. CONCLUSION: From these results it was suggested that the bitterness of food does not affect the integral value per cycle or the stability of the masticatory movement, but it does affect the movement path and rhythm, with narrowing of the path and slowing of the rhythm.


Subject(s)
Food , Masseter Muscle/physiology , Mastication/physiology , Movement/physiology , Taste/physiology , Adult , Female , Humans , Incisor/physiology , Male , Mandible/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...