Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(26): 9884-9892, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34162206

ABSTRACT

Mechanochromic mechanophores permit the design of polymers that indicate mechanical events through optical signals. Here we report rotaxane-based supramolecular mechanophores that display both reversible and irreversible fluorescence changes. These responses are triggered by different forces and are achieved by exploiting the molecular shuttling function and force-induced dethreading of rotaxanes. The new rotaxane mechanophores are composed of a ring featuring a luminophore, which is threaded onto an axle with a matching quencher and two stoppers. In the stress-free state, the luminophore is preferentially located in the proximity of the quencher, and the emission is quenched. The luminophore slides away from the quencher when a force is applied and the fluorescence is switched on. This effect is reversible, unless the force is so high that the luminophore-carrying ring slips past the stopper and dethreading occurs. We show that the combination of judiciously selected ring and stopper moieties is crucial to attain interlocked structures that display such a dual response. PU elastomers that contain such doubly responsive rotaxanes exhibit reversible fluorescence changes over multiple loading-unloading cycles due to the shuttling function, whereas permanent changes are observed upon repeated deformations to high strains due to breakage of the mechanical bond upon dethreading of the ring from the axle. This response allows one, at least conceptually, to monitor the actual deformation of polymer materials and examine mechanical damage that was inflicted in the past on the basis of an optical signal.

2.
J Am Chem Soc ; 143(14): 5519-5525, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33784073

ABSTRACT

A new approach to cyclophane-based supramolecular mechanophores is presented. We report a mechanically responsive cyclic motif that contains two fluorescent 1,6-bis(phenylethynyl)pyrene moieties that are capable of forming intramolecular excimers. The emission spectra of dilute solutions of this cyclophane and a polyurethane elastomer into which a small amount of the mechanophore (0.08 wt %) had been covalently integrated are dominated by excimer emission. Films of the cyclophane-containing polyurethane also display a considerable portion of excimer emission, but upon deformation, the fluorescence becomes monomer-dominated and a perceptible change from cyan to blue is observed. The response is instant, reversible, and consistent with a mechanically induced change of the molecular conformation of the mechanophore so that the excimer-promoting interactions between the luminophores are suppressed. In-depth investigations show a correlation between the applied strain and the emission color, which can conveniently be expressed by the ratio of monomer to excimer emission intensity. The current study suggests that cyclophanes can be utilized to develop various supramolecular mechanophores that detect and visualize weak forces occurring in polymeric materials or generated by living tissues.


Subject(s)
Ethers, Cyclic/chemistry , Luminescent Agents/chemistry , Mechanical Phenomena , Polymers/chemistry
3.
Bioorg Med Chem ; 26(18): 5159-5168, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30249498

ABSTRACT

(+)-Epogymnolactam (1) was discovered as a novel autophagy inducer from a culture of Gymnopus sp. in our laboratory. To determine structure-activity relationships among (+)-epogymnolactam analogues comparing with cerulenin (2), we synthesized 5 analogues including (-)-epogymnolactam (3) having each different functional group, and 3 analogues with different side-chain lengths. Five analogues, 3, 4, 5, 6, and 7 did not significantly increase the ratio of LC3-II to LC3-I as an autophagy marker in NIH3T3 cells. These results suggest that presence and stereochemistry of (2R,3S)-epoxy group and cyclic syn-form (1b) of 1 are important for the activity as autophagy inducer. Hexyl analogue (8) as well as 1 having butyl side-chain dose-dependently increased the ratio of LC3-II to LC3-I, whereas octyl analogue (9) and 2 rather decreased the ratio. Decyl analogue (10) did not give a change in the ratio. Although 8 seemed to be an excellent autophagy inducer, it dose-dependently increased SQSTM1 (p62) as in the case of 2, whereas 1 showed a slight dose-dependent decrease of p62 as an index of autophagic protein degradation. These observations suggest that 8 is an autophagy modulator with different molecular target from 1 or 2.


Subject(s)
Autophagy/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Design , Agaricales/chemistry , Animals , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , NIH 3T3 Cells , Stereoisomerism , Structure-Activity Relationship
4.
J Antibiot (Tokyo) ; 68(12): 721-4, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26014720

ABSTRACT

A novel autophagy inducer, (+)-epogymnolactam (1), was first synthesized from cis-4-benzyloxy-2-butene-1-ol (2) in eight steps. A reliable preparation of optically pure epoxy alcohol (+)-3 from monobenzyl derivative (2) was established by a tandem strategy, Sharpless epoxidation/lipase kinetic resolution.


Subject(s)
Autophagy/drug effects , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...